Insights into the molecular mechanisms leading to kidney dysfunction in diabetic patients

January 12, 2018, Keio University
Insights into the molecular mechanisms leading to kidney dysfunction in diabetic patients
SIRT1 and Claudin-1 levels in kidney biopsies from patients with diabetic nephropathy (DN) and normal kidneys. The results show that SIRT1 levels in PTs and glomerular regions is lower, and Claudin-1 levels in the glomerular region is higher in patients with heavy protein urea compared to those with moderate protein urea. Credit: Keio University

About one-third of diabetes patients suffer from renal failure. Therefore, understanding the mechanisms linking diabetes to renal damage (diabetic nephropathy) would benefit patients as it would help in developing new therapeutic targets and strategies. Sirtuin 1 (Sirt1) is a protein that is involved in cellular stress responses and has been implicated in diabetic nephropathy. However, the exact role of renal Sirt1 on the pathogenesis of renal damage in diabetes has not been fully elucidated.

Researchers in Japan have previously shown that Sirt1 overexpression can alleviate in a Sirt1-overexpressing mouse model. The same group has now established the mechanism that links, at least in part, Sirt1 with the pathogenesis of renal damage in diabetes.

Shu Wakino and colleagues from Keio University, Shizuoka Red Cross Hospital and the Massachusetts Institute of Technology used Sirt1-overexpressing mice, Sirt1 knockout mice and diabetic mouse models to investigate the role of Sirt1 in protecting from diabetes-induced renal damage. Reduction of Sirt1 expression resulted in an increase in Claudin-1 levels and subsequently, albuminuria, which is an early marker of renal damage. The mechanism by which Sirt1 affects the levels of Claudin-1 was found to be through directly epigenetically regulating the expression of the Cldn1 gene. Furthermore, nicotinamide mononucleotide (NMN) was found to mediate the interplay between PTs and podocytes, which are important components of the kidney filtration apparatus, and hence would directly affect albuminuria. Using human renal biopsy samples, the group found that SIRT1 and Claudin-1 levels are also involved in diabetes-related albuminuria in humans.

Taken together the results demonstrate that "Sirt1 in PTs protects against albuminuria in diabetes by maintaining NMN concentrations around glomeruli, thus influencing podocyte function," the authors conclude. Furthermore, since observations in patient samples reflect some of the mouse model results the authors state that "the results of this study could contribute to new therapeutic strategies to prevent -induced albuminuria."

Credit: Keio University

Credit: Keio University

Explore further: How berberine works to slow diabetes-related cognitive decline

More information: Kazuhiro Hasegawa et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes, Nature Medicine (2013). DOI: 10.1038/nm.3363

Related Stories

How berberine works to slow diabetes-related cognitive decline

October 31, 2017
Researchers studying the mechanism of action of the natural, plant-derived compound berberine have linked its anti-inflammatory activity and ability to regulate levels of stress-response proteins including sirtuin to berberine ...

No benefit from aliskiren-tied drops in albuminuria

February 1, 2016
(HealthDay)—Reduction in albuminuria with the renin inhibitor aliskiren may be too small to confer clinical benefit in patients with type 2 diabetes, according to a study published online Jan. 13 in Diabetes, Obesity and ...

Macrophage COX-2 prevents diabetic nephropathy progression

November 9, 2016
(HealthDay)—Macrophage cyclooxygenase-2 (COX-2) deletion is associated with progression of diabetic nephropathy (DN), according to an experimental study published online Nov. 4 issue of Diabetes.

How does prostate cancer form?

December 18, 2014
Prostate cancer affects more than 23,000 men this year in the USA however the individual genes that initiate prostate cancer formation are poorly understood. Finding an enzyme that regulates this process could provide excellent ...

Discovery of human genetic mutation could lead to new treatments for type 1 diabetes

March 5, 2013
In type 1 diabetes, the immune system destroys insulin-producing cells in the pancreas, but the precise cause has not been clear. A study published by Cell Press on March 5th in Cell Metabolism reveals that a single mutation ...

Recommended for you

Switching to certain antidiabetic drugs linked to increased risk of major complications

July 18, 2018
For people with type 2 diabetes, switching to sulfonylurea drugs to control blood sugar levels is associated with an increased risk of complications compared with staying on the drug metformin, finds a study in The BMJ today.

Researchers cure type 2 diabetes and obesity in mice using gene therapy

July 10, 2018
A research team from the UAB led by Professor Fatima Bosch has managed to cure obesity and type 2 diabetes in mice using gene therapy.

Human clinical trial reveals verapamil as an effective type 1 diabetes therapy

July 9, 2018
Researchers at the University of Alabama at Birmingham Comprehensive Diabetes Center have discovered a safe and effective novel therapy to reduce insulin requirements and hypoglycemic episodes in adult subjects with recent ...

New targets found to reduce blood vessel damage in diabetes

July 9, 2018
In diabetes, both the tightly woven endothelial cells that line our blood vessels and the powerhouses that drive those cells start to come apart as early steps in the destruction of our vasculature.

Insurance gaps linked to five-fold rise in hospital stays for adults with type 1 diabetes

July 9, 2018
For a million American adults, living with type 1 diabetes means a constant need for insulin medication, blood sugar testing supplies and specialized care, to keep them healthy and prevent a crisis that could end up in an ...

Abnormal branched-chain amino acid breakdown may raise diabetes risk

July 5, 2018
In the U.S., about five out of 100 expectant mothers develop gestational diabetes mellitus (GDM), a temporary form of diabetes in which hormonal changes disrupt insulin function. Although GDM is often symptomless and subsides ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.