Discovery of human genetic mutation could lead to new treatments for type 1 diabetes

March 5, 2013, Cell Press
This image shows a measurement of blood glucose by a patient with type 1 diabetes following a pricking of the finger with a lancet. Self-monitoring of blood glucose is recommended for people with type 1 diabetes before each injection of insulin and when hypoglycemia (low blood glucose) is suspected. Credit: Cell Metabolism, Biason-Lauber et al.

In type 1 diabetes, the immune system destroys insulin-producing cells in the pancreas, but the precise cause has not been clear. A study published by Cell Press on March 5th in Cell Metabolism reveals that a single mutation in the "longevity gene" SIRT1 can cause type 1 diabetes in humans. The findings unearth the role this gene plays in human autoimmunity and disease and also offer new avenues for treating a range of autoimmune disorders.

"We describe one of the first single gene defects leading to , as well as the first human mutation in the SIRT1 gene," says senior study author Marc Donath of University Hospital Basel. "Our findings reveal a potential mechanistic basis for the development of a treatment for type 1 diabetes and other ."

Type 1 diabetes is a lifelong, potentially fatal disease, typically diagnosed in young individuals, in which in the pancreas do not produce enough of the , resulting in high levels of blood sugar. Animal studies have shown that a gene called SIRT1, which is well known for its role in promoting longevity and protecting against age-related diseases, also regulates and the development of autoimmune conditions, and activation of this gene can protect against type 1 diabetes. But until now, the role of SIRT1 in human autoimmunity and disease was not known.

Discovery of human genetic mutation could lead to new treatments for type 1 diabetes
This image shows a patient with type 1 diabetes injecting herself with insulin. Patients with the disease have to inject insulin before each meal. Credit: Cell Metabolism, Biason-Lauber et al.

In the new study, Donath and his team described a family carrying a mutation in the SIRT1 gene. All five affected members developed an autoimmune disorder, and four developed type 1 diabetes. Using a combination of gene-sequencing techniques, the researchers identified a previously undocumented mutation that caused an amino acid substitution in the SIRT1 protein. Moreover, inactivation of the SIRT1 gene in mice led to the destruction of the insulin-producing region of the pancreas, resulting in high levels of blood sugar.

"The identification of a gene leading to type 1 diabetes should allow us to understand the mechanism responsible for the disease and may open up new treatment options," Donath says. "To follow up on this study, we are creating a mouse that carries the mutation, with the hope of developing an animal model for human type 1 diabetes, and we are exploring the possibility of conducting a clinical study with SIRT1 activators."

Explore further: Connexins: Providing protection to cells destroyed in Type 1 diabetes

More information: Cell Metabolism, Biason-Lauber et al.: "Mutation of SIRT1 in a Family with Type 1 Diabetes." dx.doi.org/10.1016/j.cmet.2013.02.001

Related Stories

Connexins: Providing protection to cells destroyed in Type 1 diabetes

November 7, 2011
Type 1 diabetes is a lifelong disease characterized by high levels of sugar (glucose) in the blood. It is caused by the patient's immune system attacking and destroying the cells in their pancreas that produce the hormone ...

Broader approach reveals genetic complexity behind diabetes genes

September 4, 2012
(Medical Xpress)—Using a new method, diabetes researchers at Lund University, Sweden, have been able to reveal more of the genetic complexity behind type 2 diabetes. The new research findings have been achieved as a result ...

Researchers increase understanding of genetic risk factor for type 1 diabetes

November 28, 2012
As part of their ongoing research on the role of genes in the development of type 1 diabetes, Joslin Diabetes Center scientists, in collaboration with scientists at the University of Würzburg, have demonstrated how a genetic ...

Recommended for you

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

A gene that increases the risk of pancreatic cancer controls inflammation in normal tissue

February 14, 2018
Inflammation is a defensive response of the body to pathogens, but when it persists, it can be harmful, even leading to cancer. Hence, it is crucial to understand the relationship between inflammation and cancer. A group ...

Scientists develop low-cost way to build gene sequences

February 13, 2018
A new technique pioneered by UCLA researchers could enable scientists in any typical biochemistry laboratory to make their own gene sequences for only about $2 per gene. Researchers now generally buy gene sequences from commercial ...

New insights into gene underlying circadian rhythms

February 13, 2018
A genetic modification in a "clock gene" that influences circadian rhythm produced significant changes in the length and magnitude of cycles, providing insight into the complex system and giving scientists a new tool to further ...

Clues to aging found in stem cells' genomes

February 13, 2018
Little hints of immortality are lurking in fruit flies' stem cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.