Why basal cell tumors return when drug treatment stops

February 1, 2018 by Nicole Fawcett, University of Michigan
When patients stop taking vismodegib, basal cell tumors often grow back. Credit: Michigan Medicine

What happens when the most common and least threatening type of cancer gets complicated?

A new study pinpoints a mechanism that controls how basal cell cancers respond to treatment and offers new ideas for controlling this disease when it gets tricky.

Basal cell carcinomas are incredibly common - somewhere between 1 million to 3 million diagnosed each year - and rarely life-threatening. They're most often removed through surgery. But for a small minority of , they can be a bigger problem.

In some cases, the cancer cannot be surgically removed, often because of where it's found. A small portion of patients have an inherited condition called basal cell nevus syndrome, or Gorlin syndrome, which causes hundreds of basal cell tumors to develop over their lifetime.

Enter the drug vismodegib. It's an early success story among targeted therapies, developed to hit a key pathway in basal cell carcinoma called Hedgehog. By blocking Hedgehog, the die.

But there's one catch: when patients stop taking the drug, the cancer often grows back at the same site.

"It's a very effective drug, but many patients have to stay on it for their entire life," says Sunny Wong, Ph.D., assistant professor of dermatology and of cell and development biology at Michigan Medicine. "We think vismodegib drives a subset of cells into a state of dormancy, where they neither grow nor die."

In a study published in Cancer Cell, researchers describe two types of cell populations in basal cell tumors. The outer edge of the tumor is lined with cells that persist even in the face of Hedgehog blockade. The inner cells, on the other hand, are about three times more likely to undergo cell death from vismodegib treatment.

"What was most fascinating was that the relative location of a cell within a tumor can have such a big effect on its sensitivity to drug treatment," says lead study author Markus Eberl, Ph.D., a former postdoctoral fellow at Michigan Medicine.

The difference stems from the Notch pathway and how each type of cell activates it. Higher levels of Notch were detected in the inner cells, while the outer cells had lower levels of Notch. When the researchers shut off Notch completely, tumors were more likely to persist despite vismodegib treatment. When they turned on Notch, tumors shrank. The work was done in mice.

The outer cells are anchored to the tumor's basement membrane, where Hedgehog signaling is high and Notch signaling is low. The researchers explain that this pattern allows cells to persist in a largely dormant state while the patient takes the Hedgehog-inhibiting vismodegib. Once the drug treatment stops, the dormant cells re-activate.

Notch plays a key role in normal skin, and is the most common mutation in skin cancers, seen in up to half of patients.

Fewer than 1 percent of patients with basal cell tumors will need vismodegib.

"The side effects of vismodegib are not life-threatening, but there are concerns," Wong notes. Many patients experience loss of taste, muscle cramps, weight loss and fatigue. The side effects drive some patients to discontinue the drug.

Drug resistance and tumor persistence are both challenging issues with Hedgehog-blocking treatments. This is the first study to address persistence and explain how the drug works and, in some cases, falls short.

"Eliminating persistent tumor cells is necessary to cure patients who have tough-to-treat cases of basal cell carcinoma," Eberl says.

The researchers suggest the key might be in developing a that changes the tumor architecture so the persistent outer cells respond more like the inner . Additional research underway is the mechanisms of why Notch affects cell death, searching for proteins or molecules that may be at play.

Explore further: New drugs could stop the growth of drug-resistant childhood tumors

More information: Markus Eberl et al, Tumor Architecture and Notch Signaling Modulate Drug Response in Basal Cell Carcinoma, Cancer Cell (2018). DOI: 10.1016/j.ccell.2017.12.015

Related Stories

New drugs could stop the growth of drug-resistant childhood tumors

September 15, 2015
Current drugs may stop working against the most common type of brain tumor in children, medulloblastoma, but the tumor could be targeted in a new way, according to Stanford University scientists.

Hedgehog signaling proteins keep cancer stem cells alive

January 22, 2018
Researchers from Charité - Universitätsmedizin Berlin have discovered that the survival of cancer stem cells is dependent on the Hedgehog signaling pathway. Targeting this pathway had previously shown no effect on the growth ...

Skin tumors develop specific mutations to resist drug, researchers say

March 10, 2015
Among people with advanced basal cell carcinomas who see their skin cancers shrink or disappear in response to a common drug therapy, about 20 percent will relapse within months as the cancer cells become resistant to the ...

Scientists issue report in Cell on advances in basal cell carcinoma

March 31, 2016
An article in the journal Cell by top scientists from the Translational Genomics Research Institute (TGen) and Mayo Clinic in Arizona details how two relatively new drugs are helping patients with basal cell carcinoma.

Blocking a protein in a critical signaling pathway could offer a new way to combat tumors

August 10, 2016
Cancer drugs that block a cell-signaling pathway called Hedgehog have shown promise in recent years in treating patients with skin cancer, leukemia and other types of tumors. But the available treatments mostly target the ...

Study links mutations in notch gene to role in B cell cancers

October 23, 2017
Notch is one of the most frequently mutated genes in chronic lymphocytic leukemia (CLL), the most common leukemia in adults in the United States. It is also often mutated in other common B cell tumors, such as mantle cell ...

Recommended for you

DNA vaccine leads to immune responses in HPV-related head and neck cancer

September 21, 2018
A therapeutic vaccine can boost antibodies and T cells, helping them infiltrate tumors and fight off human papillomavirus (HPV)-related head and neck cancer. Researchers from the Abramson Cancer Center of the University of ...

In zebrafish, a way to find new cancer therapies, targeting tumor modulators

September 21, 2018
The lab of Leonard Zon, MD, at Boston Children's Hospital has long been interested in making blood stem cells in quantity for therapeutic purposes. Looking for a way to test for their presence in zebrafish, their go-to research ...

What can salad dressing tell us about cancer? Think oil and vinegar

September 20, 2018
Researchers led by St. Jude Children's Research Hospital scientists have identified another way the process that causes oil to form droplets in water may contribute to solid tumors, such as prostate and breast cancer. The ...

Novel biomarker found in ovarian cancer patients can predict response to therapy

September 20, 2018
Despite months of aggressive treatment involving surgery and chemotherapy, about 85 percent of women with high-grade wide-spread ovarian cancer will have a recurrence of their disease. This leads to further treatment, but ...

Testing fluorescent tracers used to help surgeons determine edges of breast cancer tumors

September 20, 2018
A team of researchers with members from institutions in The Netherlands and China has conducted a test of fluorescent tracers meant to aid surgeons performing tumor removal in breast cancer patients. In their paper published ...

Cancer immunotherapy might benefit from previously overlooked immune players

September 20, 2018
Cancer immunotherapy—efforts to boost a patient's own immune system, allowing it to better fight cancer cells on its own—has shown great promise for some previously intractable cancers. Yet immunotherapy doesn't work ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.