Boosting a key protein to help bones that won't heal

February 1, 2018, University of Michigan
Credit: University of Michigan

When a patient breaks a bone, there's a possibility the fracture won't heal properly or quickly—even with the aid of pins, plates or a cast.

And use of another restorative tactic known as morphogenetic proteins, or BMPs, is increasingly less likely. Designed to promote spinal fusion and more than a decade ago, these molecules can overperform, causing excessive or misdirected bone growth, studies have shown.

But because biological research has often been limited, few other options exist.

"Novel therapies have gone underdeveloped because of this assumption that bones heal without problem," says Kurt Hankenson, D.V.M., Ph.D., a professor of orthopaedic surgery at Michigan Medicine. "The reality is there's a huge number of fractures that occur each year that don't heal very well."

The divide recently inspired Hankenson and a team of scientists from other institutions to examine a new therapeutic approach.

Their method: deliver additional Jagged-1—a potent osteoinductive protein known to activate the Notch signaling pathway that regulates bone healing—at the spot of a bone injury.

"We've hypothesized for many years that by binding the Jagged-1 to a biomaterial and delivering it to a bone injury site, we could enhance healing," Hankenson says.

The results, published in npj Regenerative Medicine, affirm that hunch: Rodents that received Jagged-1, applied via wet collagen sponge, saw improvements to skull and femoral bone injuries.

Rodents treated with BMPs, by contrast, also benefited but developed the same problematic bone hypertrophy associated with human use of those proteins.

Those findings suggest that the former therapy could one day benefit people.

Targeted healing agent

It's not fully known why some bones don't heal the way they should—nor do scientists know whether a genetic component plays a role, Hankenson says.

This much is clear: People with metabolic dysfunction, such as diabetes, have greater odds of poor healing after a fracture. So do the elderly, who are also prone to more bone injuries because of lower bone mass, such as osteoporosis. Those suffering severe trauma, regardless of age or prior health status, also are likely to face problems.

What Hankenson and other research groups have studied for years, meanwhile, is the capacity of the Jagged-1 ligand to promote bone-forming cells.

The signaling is unique, Hankenson says, because this particular ligand typically binds to a delivery cell to activate bone healing in an adjacent cell—a vital trait to help ensure that a supplemental Jagged-1 dose, administered at the spot of injury, stays in place (and on task) to carry out its intended function.

As a result, "bone will only form where bone is supposed to form," says Hankenson.

BMPs, by comparison, are soluble, so they can migrate from the site of delivery and settle elsewhere in the body, triggering other cells that aren't supposed to form bone.

Because the body produces Jagged-1 on its own, this potential new therapy would require a synthetic version of the ligand to be produced and administered to a patient.

"We do not think there is necessarily a deficiency," says Hankenson. "But when we think about biological molecules delivered for therapy, we're usually identifying something that's there normally and trying to promote more activity by giving more of it."

Future growth

Although more research and funding are needed before the concept could be tested in humans, Hankenson says the early results offer some takeaways.

Those with serious breaks or fractures that would otherwise require autogenous bone grafting stand to benefit the most from supplemental Jagged-1 injections, he notes.

That's because such grafting, which involves using bone from elsewhere in the body, is a costly surgical procedure that can have secondary problems—and has a higher morbidity risk.

Patients with slow-healing or nonhealing bones might also receive Jagged-1 well after an injury occurs, Hankenson says.

The delivery mechanism, using biomaterials to provide structure for healing, may also be refined.

Still, because medical costs for bone injuries nearly exceed $1 trillion annually in the United States, not to mention lost productivity from missed work or multiple surgeries, the impetus to find alternative solutions remains strong.

"We've been very motivated to develop new therapeutics to repair bone," says Hankenson, "and the approach we've taken to do that is to better understand the biology of healing."

Explore further: Researchers uncover a pathway that stimulates bone growth

More information: Daniel W. Youngstrom et al, Intraoperative delivery of the Notch ligand Jagged-1 regenerates appendicular and craniofacial bone defects, npj Regenerative Medicine (2017). DOI: 10.1038/s41536-017-0037-9

Related Stories

Researchers uncover a pathway that stimulates bone growth

February 13, 2013
(Medical Xpress)—Researchers from the University of Pennsylvania School of Veterinary Medicine have discovered that a protein called Jagged-1 stimulates human stem cells to differentiate into bone-producing cells. This ...

Which bone measures predict fractures in postmenopausal women?

January 24, 2018
When investigators compared initial bone parameters with changes in those parameters over time in postmenopausal women, they found that initial measurements were significantly associated with women's risk of fracture. Rates ...

Repair cartilage potentially can heal horribly broken bones

May 11, 2016
Stem cells could one day be stimulated to make a special type of cartilage to help repair large, hard-to-heal bone fractures – a potential boon for doctors treating big-money athletes, USC researchers say.

Designing bone healing therapies that better mimic regeneration

February 15, 2017
The range of biomimetic approaches to promote bone growth that are at the core of current bone healing therapies need to more closely emulate natural regenerative mechanisms. A review of biomimetic strategies to help heal ...

Amphibian approach to help bones heal faster and better

November 19, 2015
Inspired by amphibians like salamanders, researchers from the University of Southampton are developing a new type of drug that may help bones heal faster and better.

Recommended for you

Clues found to early lung transplant failure

May 21, 2018
Among organ transplant patients, those receiving new lungs face a higher rate of organ failure and death compared with people undergoing heart, kidney and liver transplants. One of the culprits is inflammation that damages ...

In breakthrough, surgeon builds windpipes from arteries

May 20, 2018
Where others failed, sometimes spectacularly, French surgeon Emmanuel Martinod has helped people whose windpipes have been ravaged by cancer and other diseases to live and breathe normally again.

Blood type O patients may have higher risk of death from severe trauma

May 1, 2018
Blood type O is associated with high death rates in severe trauma patients, according to a study published in the open access journal Critical Care that involved 901 Japanese emergency care patients.

Brains, eyes, testes: off-limits for transplants?

April 28, 2018
Since the world's first successful organ transplant in 1954—a kidney—the discipline has advanced to the point where a wounded soldier could have his penis and scrotum replaced in a groundbreaking operation last month.

Emergency treatment by older surgeons linked to slightly lower death rates

April 26, 2018
Patients undergoing emergency surgery who are treated by older surgeons (aged 60 or over) have slightly lower death rates in the first few weeks after their operation than patients treated by younger surgeons (aged less than ...

Bionic suit helps paralyzed patients stand and walk again

April 25, 2018
Patients undergoing physical rehabilitation at Rush for paralyzing injuries are being aided by a robotic suit designed to help raise people to full height and walk.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.