Study sheds new light on mechanism of breast cancer treatment resistance

February 12, 2018, Dana-Farber Cancer Institute
breast cancer
Mammograms showing a normal breast (left) and a breast with cancer (right). Credit: Public Domain

A study by researchers at Dana-Farber Cancer Institute has illuminated a specific mechanism by which estrogen receptor-positive (ER+) breast cancers can become resistant to standard therapies and metastasize.

The scientists say the mechanism explains why breast cancers with mutations in the ER gene itself—the target of drugs such as aromatase inhibitors and tamoxifen—become resistant to these therapies and are prone to become metastatic. Resistance to therapy for ER-positive is a common cause of and a major unmet need.

Myles Brown, MD, director of the Center for Functional Cancer Epigenetics at Dana-Farber, and Rinath Jeselsohn, MD, of Dana-Farber's Susan F. Smith Center for Women's Cancers, led a research team reporting the findings in Cancer Cell.

A majority of women with breast have tumors that are fueled by the . Most are treated with therapies that prevent or block the estrogen receptor in cancer cells to prevent binding by estrogen, with the goal of starving the tumor of estrogen and interrupting cancer growth.

Such endocrine therapies, including tamoxifen and aromatase inhibitor drugs, can prevent recurrence of early breast cancer, and can slow the progression of metastatic disease. However, in about one-third of patients with metastatic ER-positive breast cancer, treatment with endocrine therapies leads to the emergence of tumor cells that grow even in the absence of , resulting in treatment-resistant disease that is often incurable.

In studying the molecular causes of resistance to endocrine therapies, scientists found DNA mutations in the estrogen receptor gene in a substantial number of patients with ER-positive breast cancer. In 2013, Jeselsohn and colleagues reported finding ER mutations in the tumors of women with metastatic ER-positive breast cancer. The scientists then created laboratory models of breast cancer to investigate how the mutations (which they estimate occur in about a third of women with metastatic ER-positive breast cancer) cause treatment resistance. In these experiments they found that the mutations caused the tumors to be resistant to the drugs tamoxifen and fulvestrant (another estrogen-blocker) and estrogen deprivation.

In the new report, however, the Dana-Farber scientists revealed another previously unknown effect of three of the mutations in the ER gene. That is, the mutations not only cause resistance to estrogen blockade, but also turn on genes that drive the breast tumors to metastasize to other organs. This kind of unexpected additional action of a mutated gene is termed "neomorphic."

"That tells us that even though the drug therapies are selecting tumors that can grow without , the mutations also confer a metastatic advantage to the ," explains Brown.

The researchers then used the CRISPR-Cas9 gene editing tool to launch a search to identify which genes are essential in cells with the ER mutations. Among the essential genes they found, CDK7 was of particular interest because it was a potential drug target. In fact, Dana-Farber colleague Nathanael Gray, PhD, and his team had previously developed an experimental CDK7 inhibitor called THZ1. Tests in cell culture and in animal models with transplanted tumors showed that the combination of THZ1 and the endocrine blocker fulvestrant slowed growth of tumors more strongly than either agent alone.

"These results support the potential of this combination as a therapeutic strategy to overcome endocrine resistance caused by the ER mutants," say the authors of the report.

Jeselsohn said that clinical CDK7 inhibitors are being developed, and that "we hope to test these drugs and develop a clinical trial for patients with ER-positive ."

Explore further: Novel therapeutic target discovered for estrogen receptor positive (ER+) breast cancer

Related Stories

Novel therapeutic target discovered for estrogen receptor positive (ER+) breast cancer

November 17, 2017
Researchers at the Icahn School of Medicine at Mount Sinai have identified a protein that can be targeted to suppress growth of a common type of breast cancer known as "estrogen receptor positive" (ER+), including ER+ cancers ...

Prevalence of estrogen receptor mutations in patients with metastatic breast cancer

August 11, 2016
A new study published online by JAMA Oncology examines the prevalence and significance of estrogen receptor mutations in patients with metastatic breast cancer.

Z-endoxifen shows promise as new treatment for common breast cancer type

August 31, 2017
Z-endoxifen, a potent derivative of the drug tamoxifen, could itself be a new treatment for the most common form of breast cancer in women with metastatic disease. This finding was reported from a clinical trial conducted ...

Genetic alterations in treatment-resistant metastatic breast cancer found to be distinct from those in primary tumors

December 9, 2016
Drug-resistant, estrogen-fueled breast cancers that have spread beyond their initial site often have different genetic alterations than the original tumors, according to a large-scale tumor-tissue analysis led by Dana-Farber ...

Researchers explain breast cancer resistance to hormone therapy and point to potential new therapies

October 4, 2016
Despite the overall success of hormone therapy, breast cancer tumors in patients with metastatic disease often fail to respond. One new mechanism that can explain resistance to hormone therapy in breast cancer involves two ...

Recommended for you

Researchers artificially generate immune cells integral to creating cancer vaccines

August 14, 2018
For the first time, Mount Sinai researchers have identified a way to make large numbers of immune cells that can help prevent cancer reoccurrence, according to a study published in August in Cell Reports.

Chemicals found in vegetables prevent colon cancer in mice

August 14, 2018
Chemicals produced by vegetables such as kale, cabbage and broccoli could help to maintain a healthy gut and prevent colon cancer, a new study from the Francis Crick Institute shows.

Ovarian cancer genetics unravelled

August 14, 2018
Patterns of genetic mutation in ovarian cancer are helping make sense of the disease, and could be used to personalise treatment in future.

Lymphatic vessels unexpectedly promote the spread of cancer metastases

August 14, 2018
Lymphatic vessels actively contribute to the spread of cancer metastases from various organs. This unexpected realisation is the result of a joint study by researchers from ETH Zurich and the University Hospital Zurich as ...

Researchers uncover a major new vulnerability of childhood leukemia

August 14, 2018
Childhood leukemia is a diagnosis that no family ever wants to endure. While the treatment of most types of leukemia has improved steadily over the years, a few specific types remain very difficult to treat. One of these ...

Stress hormone is key factor in failure of immune system to prevent leukemia

August 14, 2018
The human stress hormone cortisol has been identified by scientists at the University of Kent as a key factor when the immune system fails to prevent leukemia taking hold.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.