In laboratory, scientist turns off chemo pain

pain
Credit: CC0 Public Domain

In a recent paper published in the journal Pain, Saint Louis University researchers describe their success in an animal model in turning off the excruciating pain that often accompanies a colorectal cancer drug.

Daniela Salvemini, Ph.D., professor of pharmacology and physiology at SLU, studies pathways, the series of interactions between molecular-level components that lead to pain in the body.

One type of pain she examines is induced (CINP), a debilitating side effect of chemotherapy that can appear as tingling or numbness in the hands and feet, shooting or burning pain in the limbs, or can feel like hot or cold temperature extremes. In addition to causing patients suffering, CINP is often a limiting factor when it comes to .

"Thanks to the increased efficacy of treatment, there are nearly 14 million cancer survivors in the United States," Salvemini said. "Many of these survivors suffer from long-term side effects of CINP, for which there are no proven strategies for prevention or treatment.

"This is a huge unmet medical need."

In her current paper, Salvemini studied the platinum-based chemotherapy drug oxaliplatin which is widely used to treat colorectal cancer. Over 60 percent of patients who received oxaliplatin develop CINP, and it can last for years after treatment.

The research team found that the pain pathway associated with this was driven by increased expression of an enzyme, adenosine kinase, in astrocytes (a type of central nervous system cell) and decreased adenosine signaling at a key receptor, A3AR. By supplementing this signaling with A3AR agonists, the researchers were able to block the development of CINP without interfering with the anticancer properties of platinum based drugs.

These findings advance researchers' understanding of pain pathways and provide new information about how drugs may be able to treat chemotherapy pain. Perhaps most encouraging, existing A3AR agonists currently are being studied in advanced clinical trials as novel anticancer agents. This paper makes a strong case for evaluating those drugs for use together with oxaliplatin to limit CINP while treating cancer.


Explore further

Jet lag drug may aid cancer patients

More information: Carrie Wahlman et al, Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels through astrocyte-dependent mechanisms, PAIN (2018). DOI: 10.1097/j.pain.0000000000001177
Provided by Saint Louis University
Citation: In laboratory, scientist turns off chemo pain (2018, March 26) retrieved 20 January 2019 from https://medicalxpress.com/news/2018-03-laboratory-scientist-chemo-pain.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
258 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more