New link between sleep arousals and body temperature may also be connected to SIDS

April 25, 2018, Bar-Ilan University

Brief arousals during sleep—sometimes as many as ten to fifteen per night—appear random in time and occur in humans and even in animals.

What is the origin of these arousals? Scientists from Bar-Ilan University in Israel, together with colleagues from Boston University, have discovered that brief arousals are probably triggered by the intrinsic electrical noise from wake-promoting neurons (WPN) in the brain. Their research, published in the journal Science Advances on April 25, reveals a previously unrecognized neurophysiological mechanism that links sleep arousals with regulation, and may also provide an important new link between temperature and Sudden Infant Death Syndrome (SIDS).

During sleep, WPN are suppressed by sleep promoting neurons. Nevertheless, Dr. Hila Dvir, lead co-author of the study from Bar-Ilan's Department of Physics, surmised that WPN still maintain a low level of activity, in the form of noise ("neuronal noise"). This neuronal noise is due to electrical fluctuations in the neuron voltage, which appear even without any input signal. For each neuron this noise is very low. However, since neurons are coupled to each other, the accumulated noise from many neurons can occasionally form a strong enough signal to activate WPN, causing a brief arousal.

Temperature-induced arousability during sleep, a missing piece in the puzzle for triggers of sudden infant death syndrome. Credit: © Hila Dvir & Ronny Bartsch

Neuronal noise is very much affected by body temperature, so if the temperature is high, neuronal noise is low and vice versa. Dvir and lead co-author Dr. Ronny Bartsch, of the Department of Physics, joined forces with Prof. Lior Appelbaum, of the Mina and Everard Goodman Faculty of Life Sciences, to test whether the temperature dependence of neuronal noise directly translates into a different arousal behavior in zebrafish. Zebrafish are the optimal species for such an experiment since their body temperature can be easily manipulated by water temperature. The researchers analyzed periods when the zebrafish were predominantly sleeping and determined sleep duration and number of arousals in varying water temperatures. They found that, indeed, an increase in led to fewer and shorter arousals.

These experimental results were in excellent agreement with computer simulations that Dvir and Bartsch developed prior to the experiments, and which are based on a statistical physics model of the temperature dependent noise. "Because of this excellent agreement between model predictions and the experiment, we believe that sleep arousals can be attributed to the neuronal noise of wake-promoting ," says Bartsch.

The findings of the study present a possible new link between temperature, sleep arousals and Sudden Infant Death Syndrome (SIDS), the sudden, unexplained death during sleep of children under one year of age. Elevated room temperature, extensive crib bedding and prone sleeping position—all factors that contribute to higher body temperature—are known to increase the risk of SIDS. So far, the mechanism of why higher body temperature increases the risk of SIDS is unknown but neuronal noise and brief arousals could be a key. Since thermoregulation in young infants is not yet fully developed, their body temperature is highly affected by the environment/room temperature (similar to fish). "We think that SIDS can occur when as a result of higher temperature, neuronal noise levels and the associated probability for arousals are low," says Dvir. "In contrast, when the temperature is lower, an infant has higher neuronal noise level that yield more arousals during which the infant can change his position to help himself breath more freely or move a blanket that may be covering his face."

Explore further: Blood of SIDS infants contains high levels of serotonin

More information: H. Dvir el al., "Neuronal noise as an origin of sleep arousals and its role in sudden infant death syndrome," Science Advances (2018). DOI: 10.1126/sciadv.aar6277 , http://advances.sciencemag.org/content/4/4/eaar6277

Related Stories

Blood of SIDS infants contains high levels of serotonin

July 3, 2017
Blood samples from infants who died of Sudden Infant Death Syndrome (SIDS) had high levels of serotonin, a chemical that carries signals along and between nerves, according to a study funded in part by the National Institutes ...

Intense awakenings during the night may contribute to sleep apnoea

November 1, 2016
Researchers from Neuroscience Research Australia have identified a potential new cause for obstructive sleep apnoea. Specifically, how 'intensely' a person wakes during the night.

These carbon dioxide-sensing neurons wake up mice

January 29, 2018
Stimulating a population of neurons in the midbrain with carbon dioxide (CO2) awakens adult male mice without enhancing breathing, finds a study published in JNeurosci. These findings are relevant to understanding disorders ...

The brain's internal clock continually takes its temperature

March 7, 2018
Circuits in the brain act as an internal clock to tell us it is time to sleep and to control how long we then stay asleep. A new study in flies suggests a part of that clock constantly monitors changes in external temperature ...

Infants swaddling for sleep associated with sudden infant death syndrome

May 9, 2016
The risk of Sudden Infant Death Syndrome (SIDS) appears to increase when infants are swaddled while sleeping on their stomachs or sides, new research has found.

Recommended for you

Study suggests brainwave link between disparate disorders

May 24, 2018
A brainwave abnormality could be a common link between Parkinson's disease, neuropathic pain, tinnitus and depression—a link that authors of a new study suggest could lead to treatment for all four conditions.

In a break with dogma, myelin boosts neuron growth in spinal cord injuries

May 23, 2018
Recovery after severe spinal cord injury is notoriously fraught, with permanent paralysis often the result. In recent years, researchers have increasingly turned to stem cell-based therapies as a potential method for repairing ...

Memory molecule limits plasticity by calibrating calcium

May 23, 2018
The brain has an incredible capacity to support a lifetime of learning and memory. Each new experience fundamentally alters the connections between cells in the brain called synapses. To accommodate synaptic alterations, ...

New type of vertigo identified

May 23, 2018
Neurologists have identified a new type of vertigo with no known cause, according to a study published in the May 23, 2018, online issue of Neurology, the medical journal of the American Academy of Neurology.

Study confirms that men and women tend to adopt different navigation strategies

May 23, 2018
When navigating in a known environment, men prefer to take shortcuts to reach their destination more quickly, while women tend to use routes they know. This is according to Alexander Boone of UC Santa Barbara in the US who ...

Changes to specific MicroRNA involved in development of Lou Gehrig's disease

May 23, 2018
A new Tel Aviv University study identifies a previously unknown mechanism involved in the development of Lou Gehrig's disease, or amyotrophic lateral sclerosis (ALS). The research focuses on a specific microRNA whose levels ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.