New study finds knocking out p63 gene as means of converting scar tissue into muscle tissue in the heart

April 17, 2018 by Dipali Pathak, Baylor College of Medicine

Following a heart attack, the parts of the heart muscle that die do not regenerate into new heart tissue and instead are replaced by scar tissue. Using rodent models, researchers at Baylor College of Medicine are looking for a means to genetically convert this scar tissue into muscle tissue at the cellular level, which could ultimately be a way to treat heart attack and heart failure patients. Their latest work was published in The Journal of Thoracic and Cardiovascular Surgery.

"Nearly 5 million Americans can be expected to develop advanced congestive heart failure, and, currently, heart transplant or mechanical circulatory support implantation are the only options for patients with end-stage heart failure," said Dr. Todd Rosengart, chair and professor of the Michael E. DeBakey Department of Surgery at Baylor and senior author of the paper. "Our latest findings offer a promising new solution for treatment and improved cardiac function."

The goal of the study was to increase the plasticity of the heart scar cells, meaning their ability to take on characteristics of cells.

Through gene transfer studies in the lab, Rosengart and a team of researchers discovered that a gene called p63 appears to repress the cell plasticity. When the researchers knocked out this gene, they found that cell reprogramming increased and some cells developed heart muscle cell characteristics. Under proper conditions, other cells started beating.

"This could potentially be a safe and effective strategy for inducing human cardiac cellular reprogramming as a potential therapeutic strategy for the treatment of ," Rosengart said.

The next step in the research is to use this new strategy to improve heart function in animal models, which the researchers have already accomplished previously with other less potent reprogramming strategies.

Explore further: How Gata4 helps mend a broken heart

More information: Vivekkumar Patel et al. p63 Silencing Induces Reprogramming of Cardiac Fibroblasts into Cardiomyocyte –Like Cells, The Journal of Thoracic and Cardiovascular Surgery (2018). DOI: 10.1016/j.jtcvs.2018.03.162

Related Stories

How Gata4 helps mend a broken heart

August 15, 2017
During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the heart muscle dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts ...

Vitamin D may help prevent heart failure after heart attack

March 8, 2018
New research has shown how vitamin D may help protect heart tissue and prevent heart failure after a heart attack, potentially offering a low-cost addition to existing treatments for heart failure.

Scientists create heart cells better, faster, stronger

November 10, 2016
Scientists at the Gladstone Institutes identified two chemicals that improve their ability to transform scar tissue in a heart into healthy, beating heart muscle. The new discovery advances efforts to find new and effective ...

Scientists describe the mechanism of heart regeneration in the zebrafish

February 12, 2018
Some animals, including the zebrafish, have a high capacity to regenerate tissues, allowing them to recovery fully after cardiac injury. During this process, the heart muscle cells divide to replace the damaged tissue. However, ...

Scientists reverse advanced heart failure in an animal model

October 4, 2017
Researchers have discovered a previously unrecognized healing capacity of the heart. In a mouse model, they were able to reverse severe heart failure by silencing the activity of Hippo, a signaling pathway that can prevent ...

Blood cancer gene could be key to preventing heart failure

October 16, 2017
A new study, published today in Circulation, shows that the gene Runx1 increases in damaged heart muscle after a heart attack. An international collaboration led by researchers from the University of Glasgow, found that mice ...

Recommended for you

Research team traces pathway to cardioprotection in post-ischemic heart failure

December 11, 2018
During an ischemic attack, the heart is temporarily robbed of its blood supply. The aftermath is devastating: reduced heart contractility, heart cell death, and heart failure. Contributing to these detrimental changes is ...

Workplace exposure to pesticides and metals linked to heightened heart disease risk

December 11, 2018
Workplace exposure to metals and pesticides is linked to a heightened risk of heart disease in Hispanic and Latino workers, reveals research published online in the journal Heart.

Macrophage cells key to helping heart repair—and potentially regenerate, new study finds

December 11, 2018
Scientists at the Peter Munk Cardiac Centre have identified the type of cell key to helping the heart repair and potentially regenerate following a heart attack.

Study reveals new link between atrial fibrillation and mutations in heart disease gene

December 11, 2018
Atrial fibrillation (Afib), a heart condition that causes a rapid, irregular heartbeat that increases a person's risk of stroke and heart failure, is fairly common among older adults. However, its early onset form is relatively ...

Researchers have found that incidence of heart failure was around two-fold higher in people with diabetes

December 11, 2018
Researchers have found that incidence of heart failure was around two-fold higher in people with diabetes.

Study: Age, race differences determine risk of stroke in women and men

December 11, 2018
A new study found that, between the ages of 45 and 74 years, white women were less likely to have a stroke than white men, but at age 75 and older, there was no difference in stroke risk between white women and men. In contrast, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.