Brick by brick—assembly of the measles virus

May 2, 2018 by Quinn Eastman, Emory University
An electron micrograph of the measles virus. Credit: CDC/ Courtesy of Cynthia S. Goldsmith

Researchers have been able to capture images of measles viruses as they emerge from infected cells, using state of the art cryo-electron tomography techniques. The new images will help with a greater understanding of measles and related viruses, and could give hints on antiviral drug strategies likely to work across multiple viruses of this type.

The results were published Monday, April 30 in Nature Communications.

Scientists led by Elizabeth Wright, Ph.D., and Zunlong Ke, Ph.D., say they can discern an internal acting as a scaffold, with the encapsidated genetic material visible as "snakes" close to the viral membrane.

An effective vaccine is available against measles , a highly infectious viral pathogen. Yet there is still a lot about the virus scientists don't understand, Ke says. In addition, understanding the internal organization of measles virus could guide the study of related viruses, such as parainfluenza and (RSV), common causes of respiratory illnesses, and Nipah virus, an inspiration for the film Contagion.

Wright is associate professor of pediatrics at Emory University School of Medicine and Children's Healthcare of Atlanta, director of the Robert P. Apkarian Integrated Electron Microscopy Core, and a Georgia Research Alliance Distinguished Investigator. Ke is a former Georgia Tech graduate student who is starting a postdoctoral position this summer at the MRC Laboratory of Molecular Biology in Cambridge, UK. Ke and Emory staff scientist Joshua Strauss, Ph.D. are co-first authors of the paper.

Wright, Ke, and colleagues decided to examine virus-infected cells directly a couple years ago, after working with purified viruses for a long time. The team collaborated with Richard Plemper, Ph.D., who specializes in measles virus and is now at Georgia State University. The family of viruses that includes measles, paramyxoviruses, are difficult to work with, because of their low titers, instability and heterogeneity, Wright says.

For structural studies, researchers usually concentrate and purify viruses by centrifuging them through thick solutions. But this is tricky for measles virus and other enveloped viruses such as RSV. Ke likens purified virus to a bucket of water balloons of different sizes, which are squishy and prone to burst, frustrating efforts to visualize them.

Credit: Emory University

"Instead, we grow and infect the cells directly on the grids we use for microscopy, and rapidly freeze them, right at the stage when they are forming new viruses," Ke says.

Improvements in technology, such as direct electron detectors and software that corrects for beam-induced motion in the frozen sample, make it possible to achieve higher resolution cryo-EM structures. Cryo-electron tomography (cryo-ET), ideal for studying viruses that come in different shapes and sizes, uses an electron microscope to obtain a series of 2-D pictures of the viruses as the sample holder is tilted to multiple angles along one axis. The images and the angular information are then used to compute the 3-D volume of the virus, much like a medical CT scan, Wright says.

"We would never see this level of detail with purified virus, because the process of purification disrupts and damages the delicate virus particles," she says. "With the whole-cell tomography approach, we can collect data on hundreds of viruses during stages of assembly and when released. This allows us to capture the full spectrum of structures along the virus assembly pathway."

For example, the scientists can now see the organization of glycoproteins on the surface of the viral membrane. Previous work showed two glycoproteins were present on the membrane, but they were a "forest of trees," where there was insufficient detail to identify each one.

In this study, the team was able to resolve the two glycoproteins and determine that one of them, the fusion (F) protein, was organized into a well-defined lattice supported by interactions with the matrix protein. In addition, they can see "paracrystalline arrays" of the matrix protein, called M, under the membrane. The arrays had not been seen in measles virus-infected cells or individual virus particles before, Wright says. Under the microscope, these arrays look a bit like Lego grid plates, from which the rest of the virus is built and ordered.

The new 3-D structures also argue against a previous model of viral assembly, which had the RNP (ribonucleoprotein) genetic material as a core, and the M protein forming a coat around it.

The scientists are still figuring out what makes have a bulbous shape while RSV is more filamentous. Ke thinks the scaffold role of M is similar for related viruses, although as the virus assembles, the individual structural proteins may coordinate uniquely to produce virus particles with different shapes that better support their replication cycle.

Explore further: Ebola virus exploits host enzyme for efficient entry to target cells

More information: Zunlong Ke et al. Promotion of virus assembly and organization by the measles virus matrix protein, Nature Communications (2018). DOI: 10.1038/s41467-018-04058-2

Related Stories

Ebola virus exploits host enzyme for efficient entry to target cells

February 7, 2018
Researchers have identified a key process that enables the deadly Ebola virus to infect host cells, providing a novel target for developing antiviral drugs. The Ebola virus incorporates a cellular enzyme into its virus particles, ...

One step closer to vaccine for common respiratory disease

June 17, 2013
Young children and the elderly are especially susceptible to respiratory syncytial virus. The three-dimensional structure of respiratory syncytial virus has been solved by an international team from Finland and Switzerland.

Why measles spreads so quickly

November 2, 2011
Mayo Clinic researchers have discovered why measles, perhaps the most contagious viral disease in the world, spreads so quickly. The virus emerges in the trachea of its host, provoking a cough that fills the air with particles ...

Recommended for you

Reconstructing Zika's spread

May 24, 2018
The urgent threat from Zika virus, which dominated news headlines in the spring and summer of 2016, has passed for now. But research into how Zika and other mosquito-borne infections spread and cause epidemics is still very ...

Molecular network boosts drug resistance and virulence in hospital-acquired bacterium

May 24, 2018
In response to antibiotics, a gene regulation network found in the bacterium Acinetobacter baumannii acts to boost both virulence and antibiotic resistance. Edward Geisinger of Tufts University School of Medicine and colleagues ...

Past use of disinfectants and PPE for Ebola could inform future outbreaks

May 24, 2018
Data from the 2014 Ebola virus outbreak at two Sierra Leone facilities reveal daily usage rates for disinfectant and personal protective equipment, informing future outbreaks, according to a study published May 24, 2018 in ...

Tick bite protection: New CDC study adds to the promise of permethrin-treated clothing

May 24, 2018
The case for permethrin-treated clothing to prevent tick bites keeps getting stronger.

Early lactate measurements appear to improve results for septic patients

May 24, 2018
On October 1, 2015, the United States Centers for Medicare and Medicaid Services (CMS) issued a bundle of recommendations defining optimal treatment of patients suffering from sepsis, a life-threatening response to infection ...

Dengue: Investigating antibodies to identify at-risk individuals

May 23, 2018
Using an original mathematical and statistical analysis method, a team of scientists from the Institut Pasteur partnered with researchers from the United States and Thailand to analyze a Thai cohort that has long been a focus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.