Link between tuberculosis and Parkinson's disease discovered

May 22, 2018, The Francis Crick Institute
Link between tuberculosis and Parkinson’s disease discovered
Credit: The Francis Crick Institute

The mechanism our immune cells use to clear bacterial infections like tuberculosis (TB) might also be implicated in Parkinson's disease, according to a new collaborative study led by scientists from the Francis Crick Institute and Newcastle University.

The findings, which are published in the EMBO Journal, provide a possible explanation of the cause of Parkinson's and suggest that drugs designed to treat Parkinson's might also work for TB.

Parkinson's protein

The most common genetic mutation in Parkinson's disease patients is in a gene called LRRK2, which makes the LRRK2 protein overactive.

Drugs that block LRRK2 are a promising new treatment for Parkinson's, with a number of pharmaceutical companies developing drugs to target LRRK2 and clinical trials underway. But how overactive LRRK2 causes Parkinson's and why LRRK2 blockers work was a mystery.

The biological causes of Parkinson's remain largely unknown, making it more difficult to develop and improve treatments. Discovering a mechanism that causes Parkinson's and how drugs affect it could significantly advance efforts to improve treatments.

Insights from TB

By studying what LRRK2 does in called macrophages that are infected with Mycobacterium tuberculosis (Mtb) - the bacterium that causes TB—researchers believe they have uncovered a potential cause of Parkinson's.

Macrophages recognise and engulf Mtb securing it within tight-fitting internal compartments called phagosomes. Another part of the cell called the lysosome then fuses with the phagosome to destroy the bacterium inside.

Using a combination of different experimental approaches, the researchers found that LRRK2 prevents phagosomes from fusing with lysosomes in both human and mouse macrophages, making them less efficient at clearing bacteria. Deleting the LRRK2 gene or treating the cells with an LRRK2 blocker significantly reduced levels of Mtb.

These findings in cells were supported by experiments in mice. When the researchers deleted the gene for LRRK2 in mice, they found that they exhibited an enhanced early immune response to TB infection, and had significantly lower levels of Mtb in their lungs than control mice up to two weeks after infection.

"We think that this mechanism might also be at play in Parkinson's disease, where abnormal masses of protein called 'Lewy bodies' build up in neurons in the brain and cause damage," said Susanne Herbst, joint first author of the paper and postdoctoral fellow at the Crick.

The team suspect that LRRK2 might be preventing immune cells in the brain from degrading cell debris properly, leading to a build-up of protein in neurons that disrupts their function.

Susanne added: "By studying TB, we have found a possible explanation for why LRRK2 mutations are a genetic risk factor for Parkinson's disease. It's exciting when different fields of research connect up in unexpected ways like this!"

Co-senior author Matthias Trost, expert in proteomics and phagosome biology at Newcastle University, said: "Both our labs independently identified the main findings and this paper is a great example where sharing data and combining different technologies made the difference.

"Our data implies that the conserved machinery that cells use to destroy and degrade external particles such as bacteria and damaged neurons is an important target for drug discovery."

Parkinson's disease expert and co-author Patrick Lewis, Associate Professor in Cellular and Molecular Neuroscience at the University of Reading, said: "The dogma in the Parkinson's field has been to focus almost exclusively on what is happening to neurons in the brain to make them degenerate. But over the last few years, there has been a growing appreciation of the integral role of other cells in the brain and particularly the immune system in keeping neurons healthy.

"This study reinforces why we should think more broadly about the events that cause neurodegeneration, and that some of the answers to Parkinson's disease might come from immunology."

Anetta Härtlova, joint first author and postdoctoral researcher at Newcastle University, said: "Our work neatly agrees with recent findings that the immune system plays a key role in Parkinson's disease and other neurodegenerative diseases. Thus, targeting inflammatory responses will be a key goal of Parkinson's disease therapy."

New TB treatments

The findings also suggest that LRRK2 inhibitors could be a powerful new way of combating TB, which kills 1.67 million people every year.

"Drug-resistant TB is a serious emerging problem, and boosting the body's own immune defence against TB is an important step in the battle against antibiotic resistant strains," said Max Gutierrez, Group Leader at the Crick and co-senior author of the paper.

"LRRK2 inhibiting drugs are already being developed to treat Parkinson's disease and in my lab we're trying to see if we can repurpose them as a potential new TB therapy. This should be relatively straightforward because TB infects the lungs, so the LRRK2 inhibitors wouldn't need to cross the blood-brain barrier like they do in Parkinson's disease."

The research paper 'LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages' is published in the EMBO Journal.

Explore further: Parkinson's gene initiates disease outside of the brain

More information: Anetta Härtlova et al. LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages, The EMBO Journal (2018). DOI: 10.15252/embj.201798694

Related Stories

Parkinson's gene initiates disease outside of the brain

March 21, 2018
Until very recently, Parkinson's had been thought a disease that starts in the brain, destroying motion centers and resulting in the tremors and loss of movement. New research published this week in the journal Brain, shows ...

Early intervention may be possible for Parkinson's disease

December 9, 2016
One of the largest post-mortem brain studies in the world has confirmed that a protein (LRRK2) associated with the development of Parkinson's disease is increased in the pre-symptom stages, leading researchers to believe ...

Discovery may lead to a treatment to slow Parkinson's disease

July 19, 2016
Using a robust model for Parkinson's disease, University of Alabama at Birmingham researchers and colleagues have discovered an interaction in neurons that contributes to Parkinson's disease, and they have shown that drugs ...

Newly described process in Parkinson's protein as a potential new therapy route

October 18, 2017
An international group of researchers led by Professor Wim Versées (VIB-VUB) has unraveled the workings of an essential mechanism in Parkinson's protein LRRK2. Their study demonstrates a direct link between the protein's ...

Identifying another piece in the Parkinson's disease pathology puzzle

January 28, 2016
An international public-private research consortium has identified and validated a cellular role of a primary Parkinson's disease drug target, the LRRK2 kinase. This important finding, published in the online, open-access ...

Recommended for you

New transgenic model of Parkinson's illuminates disease biology

October 11, 2018
Parkinson's disease (PD) is a neurodegenerative disorder that presents clinically with abnormal movement and tremors at rest. In the brain, PD is marked by the accumulation of the protein, α-synuclein (αS), into clumps ...

Early Parkinson's patients waiting too long to seek medical evaluation

September 27, 2018
The time between diagnosis and the institution of symptomatic treatment is critical in the effort to find a cure for Parkinson's Disease (PD). A paper published in Nature Partner Journal: Parkinson's Disease notes too many ...

Molecule capable of halting and reverting neurodegeneration caused by Parkinson's disease identified

September 25, 2018
The small SynuClean-D molecule interrupts the formation of the alpha-synuclein amyloid fibres responsible for the onset of Parkinson's disease, and reverts the neurodegeneration caused by the disease. The study, headed by ...

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018
An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published ...

ADHD may increase risk of Parkinson's disease and similar disorders

September 12, 2018
While about 11 percent of children (4-17 years old) nationwide have been diagnosed with attention-deficit hyperactivity disorder (ADHD), the long-term health effects of having ADHD and of common ADHD medications remains understudied. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.