A 'dirty bomb' battles cancer metastasis

May 16, 2018, Northwestern University
Scientists develop potential new approach to stop cancer metastasis
Metarrestin treatment markedly reduced the number of metastatic tumors in the liver and lung of mice with pancreatic cancer. Credit: K.J. Frankowski et al., Science Translational Medicine (2018)

The death of her mother from ovarian cancer when Dr. Sui Huang was only 12 led to her lifelong scientific pursuit and a new discovery that Huang hopes may eventually prevent other children from suffering such a painful loss.

Huang, a Northwestern Medicine scientist, and colleagues, have used a new approach and discovered a new compound that halts the spread of cancer cells, which is what makes the disease so lethal.

Scientists from the National Cancer Institute (NCI), the University of Kansas, the National Center for Advancing Translational Science (NCAT) and Dr. Chen Wang, a research associate in Huang's lab, worked closely as a team to make this discovery possible.

Huang had already discovered the complex marker that indicates cancer cells' ability to transform into metastasizing "multiple-headed monsters," as she describes them.

In the new study, co-corresponding author Huang and colleagues have found a compound that blows up the monster and significantly reduced metastasis by human prostate, pancreatic and breast cancer transplanted into mice.

Mice treated with the compound, named metarrestin, had fewer metastatic tumors in the lung and liver, and lived longer than mice that did not receive treatment.

The paper will be published May 16 in Science Translational Medicine.

Metarrestin will be submitted to the Food and Drug Administration for approval as an investigational drug in the near future, with the goal of launching a clinical trial.

There currently is not a drug aimed at selectively preventing cancer metastasis.

"It's like a dirty bomb against cancer," said Huang, an associate professor of cell and molecular biology at Northwestern University Feinberg School of Medicine, describing metarrestin's potency against metastasizing cells. "It could potentially result in a better outcome for patients with solid tumor cancers with high potential to spread to other organs."

Why is it important to develop a drug that doesn't just target one gene but multiple factors?

"The metastatic cancer cell is a beast that is nearly entirely different from a normal cell," said Huang, who has been working on this research for 25 years. "Targeting one thing is not sufficient to stop metastatic cancer."

Most of the time the primary cancer tumor—which can be dealt with by surgery, radiation and chemotherapy—doesn't cause death.

"What kills people is when cancer spreads to other organs, such as when breast cancer spreads to the brain, liver, lungs or bones," Huang said.

Scientists develop potential new approach to stop cancer metastasis
Metarrestin treatment disassembled PNCs (structures associated with cancer metastasis, green) in mice with pancreas tumors and liver metastasis. Credit: K.J. Frankowski et al., Science Translational Medicine (2018)

The cancer patient survival rate has significantly improved in the last 20 years due to earlier diagnosis and combinational treatments. But the survival of people with metastatic cancer has not changed much.

Metarrestin potentially could be effective as part of combinational therapy after cancer surgery.

"This represents a new strategy for developing anti-cancer drugs," Huang said. "It's seeking one compound that can potentially affect multiple relevant targets that are promoting metastasis."

The marker for metastasis Huang and another scientist discovered in the late 1990s is the complex marker PNC, short for perinucleolar compartment. Its presence in the primary tumor correlates to the tumor's ability to spread and the poor survival of the patients. The higher the PNC level, the worse the prognosis.

Going for total annihilation

For this new study, National Cancer Institute scientists tested 140,000 compounds against PNC, searching for one that caused total annihilation. They finally found a compound and made a large modification to make a more effective one. The new compound, which they named metarrestin, significantly inhibited metastasis in human breast cancer, prostate cancer and pancreatic cancer that had been grafted into mice.

"We wanted to find that magic compound that strikes multiple parts of the monster. It doesn't just hit its head. It hits its claws, its fangs and its tail," Huang said.

Scientists inoculated cancer cell lines originally derived from human pancreatic cancer and prostate cancer into mice organs to generate tissue grafts, called xenografts. These mice were then treated with metarrestin and controls.

With breast cancer, the lung pleural fluid was collected and metastatic cells were isolated and directly inoculated into mice without going through the culture system. This type of tissue graft, called patient derived xenograft, is considered more representative of a human cancer condition.

The doctor becomes a scientist

While Huang's mother's death inspired her to go into medicine, it was an encounter with an 18-year-old boy during her oncology rotation at a Chinese hospital that drove her to become a scientist.

"He was supposed to be the best student in his home town," Huang said. "He had just taken a college entrance exam and got the top score, but he had a high fever."

He was quickly diagnosed with acute lymphoma. There was little Huang or anyone could do. He died in less than a month.

"I felt so useless," Huang said. "After that I felt being a doctor wouldn't help someone like him. I decided to go to graduate school to become a scientist to try to solve the problem."

Explore further: Researchers identify compound to prevent breast cancer cells from activating in brain

More information: K.J. Frankowski el al., "Metarrestin, a perinucleolar compartment inhibitor, effectively suppresses metastasis," Science Translational Medicine (2018). stm.sciencemag.org/lookup/doi/ … scitranslmed.aap8307

Related Stories

Researchers identify compound to prevent breast cancer cells from activating in brain

March 22, 2018
Researchers at Houston Methodist used computer modeling to find an existing investigational drug compound for leukemia patients to treat triple negative breast cancer once it spreads to the brain.

New understanding of why cancer cells move

December 27, 2017
A University of Hawai'i Cancer Center researcher has identified how some cancer cells are made to move during metastasis. The research provides a better understanding of how cancer spreads and may create new opportunities ...

Potential cholesterol-lowering drug molecule has prostate cancer fighting capabilities

April 14, 2016
Standard treatment for prostate cancer can include chemotherapy that targets receptors on cancer cells. However, drug-resistant cancer cells can emerge during chemotherapy, limiting its effectiveness as a cancer-fighting ...

Cholesterol byproduct hijacks immune cells, lets breast cancer spread

October 12, 2017
High cholesterol levels have been associated with breast cancer spreading to other sites in the body, but doctors and researchers don't know the cause for the link. A new study by University of Illinois researchers found ...

Promising new strategy to halt pancreatic cancer metastasis

March 2, 2015
Pancreatic cancer and its metastases might have their days numbered, according to a study published in The Journal of Experimental Medicine.

Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism

July 6, 2017
(Medical Xpress)—A team of researchers working at the Albert Einstein College of Medicine in the U.S. has found evidence that suggests administering chemotherapy to breast cancer patients prior to surgery can put them at ...

Recommended for you

Compound in citrus oil could reduce dry mouth in head, neck cancer patients

May 21, 2018
A compound found in citrus oils could help alleviate dry mouth caused by radiation therapy in head and neck cancer patients, according to a new study by researchers at the Stanford University School of Medicine.

Scientists reveal likely cause of childhood leukaemia

May 21, 2018
A major new analysis reveals for the first time the likely cause of most cases of childhood leukaemia, following more than a century of controversy about its origins.

Bladder cancer model could pave the way for better drug efficacy studies

May 21, 2018
Understanding that not all bladder cancers are the same, researchers at the University of North Carolina Lineberger Comprehensive Cancer Center have created a tool that may help them to uncover why only a fraction of patients ...

Ice cream funds research showing new strategy against thyroid cancer

May 21, 2018
Anaplastic thyroid cancer is almost uniformly fatal, with an average lifespan of about 5 months after diagnosis. And standard treatment for the condition includes 7 weeks of radiation, often along with chemotherapy.

MR spectroscopy imaging reveals effects of targeted treatment of mutant IDH1 gliomas

May 18, 2018
Using a novel imaging method, a Massachusetts General Hospital (MGH) research team is investigating the mechanisms behind a potential targeted treatment for a subtype of the deadly brains tumors called gliomas. In their report ...

Particle shows promise to prevent the spread of triple-negative breast cancer

May 18, 2018
USC researchers have pinpointed a remedy to prevent the spread of triple-negative breast cancer. Metastatic breast cancer is a leading cause of death for women. The findings appear today in Nature Communications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.