An unexpected chemosensor pathway for innate fear behavior against predator odor

May 21, 2018, University of Tsukuba
Credit: University of Tsukuba

Innate fear is an essential emotion for animals to avoid danger in a severe natural environment. Rodents kept in a laboratory also show instinctive fear behavior against the smell of predators such as foxes, cats or snakes despite having never seen them. This innate fear represents an evolutionarily conserved and genetically encoded survival mechanism. However, the molecular basis of innate behaviors is largely unknown.

Scientists centered at the International Institute for Integrative Sleep Medicine (WPI-IIIS) at the University of Tsukuba in Japan used chemical mutagenesis to introduce random mutations into mice. The animals are screened for abnormal responses against a potent derivative of fox odorant. The screen identified a mutant pedigree, named Fearless, showing markedly attenuated freezing response (typical fear in mice) against the odorant. The Fearless pedigree carried a mutation in the Trpa1 gene, which function as a pungency/irritancy receptor.

Loss of Trpa1 in mice diminished odor-evoked behaviors, although they exhibit a normal sense of smell. The research team then found that Trpa1 acts as a chemosensor to detect predator odors. Trpa1 is highly expressed in the trigeminal somatosensory system, which plays a crucial role in nociception, sensing harmful and potentially painful chemicals. They showed that Trpa1-expressed trigeminal neurons contribute critically to fear odor-evoked innate freezing behavior.

"Surprisingly, the trigeminal system, but the not the traditional olfactory system, triggers instinctive fear responses," says the senior author Qinguha Liu. "Predator odor-mediated activation of the Trpa1 nociceptive pathway should instinctively warn the mice of imminent dangers and trigger emergency responses to promote survival. Our studies provide a compelling molecular logic to explain how predator odor-evoked innate fear/defensive behaviors are genetically hardwired."

Furthermore, understating basic mechanism of emotion is important for therapeutics of human anxiety disorders. According to the National Institute of Mental Health (NIMH), approximately 40 million of Americans are affected by a spectrum of fear/anxiety disorders.

"We hope that identification of core fear genes, together with the use of 'fearful' as animal models, should facilitate our understanding of genetic origins and development of novel and effective therapeutics for human anxiety disorders," says a co-author Masashi Yanagisawa.

Explore further: Tracing the scent of fear: Study identifies neurons, brain region involved in rodent stress response

More information: Yibing Wang et al. Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors, Nature Communications (2018). DOI: 10.1038/s41467-018-04324-3

Related Stories

Tracing the scent of fear: Study identifies neurons, brain region involved in rodent stress response

March 21, 2016
The odor of bobcat urine, if you ever get a chance to take a whiff, is unforgettable—like rotten meat combined with sweat, with something indescribably feral underlying it. To humans, it's just nose-wrinklingly disgusting.

Animal study connects fear behavior, rhythmic breathing, brain smell center

April 20, 2018
"Take a deep breath" is the mantra of every anxiety-reducing advice list ever written. And for good reason. There's increasing physiological evidence connecting breathing patterns with the brain regions that control mood ...

Gene variant increases empathy-driven fear in mice

April 20, 2018
Researchers at the Center for Cognition and Sociality, within the Institute for Basic Science (IBS), have just published as study in Neuron reporting a genetic variant that controls and increases empathy-driven fear in mice. ...

Decoding the chemistry of fear

March 19, 2018
Ask a dozen people about their greatest fears, and you'll likely get a dozen different responses. That, along with the complexity of the human brain, makes fear—and its close cousin, anxiety—difficult to study. For this ...

Sniffing out danger: Scientists say fearful memories can trigger heightened sense of smell

December 12, 2013
Most people – including scientists – assumed we can't just sniff out danger.

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.