New clinical trial takes personalized approach for rare type of ALS in Appalachia

June 13, 2018 by Mallory Powell, University of Kentucky
Members of the multidisciplinary team at UK HealthCare's ALS Clinic which has been named a Certified Treatment Center of Excellence by the ALS Association. Credit: University of Kentucky

ALS, or amyotrophic lateral sclerosis, is a neurodegenerative disease of some fame in the United States. Many Americans know the illness, which currently has no cure, as Lou Gehrig's disease, after the beloved baseball player whose career and life were cut short by the condition in the 1930s and 1940s.

More recently, renowned physicist Stephen Hawking died of ALS. Perhaps more than anyone else, Hawking reminds us of the particular cruelty of the disease, which slowly robs a person of muscle movement while leaving their cognitive abilities intact. The average life expectancy after diagnosis is only four to five years and nearly everyone with ALS ultimately dies from the inability to breathe.

Around 6,000 new cases of ALS are diagnosed annually, making it the most common motor neuron disease in the U.S. About 90 percent of cases are sporadic—without genetic cause—but the remaining 10 percent of cases are familial, caused by a genetic variant passed down from parent to child. It was only in the 1990s that researchers first identified a gene involved in familial ALS—the SOD1 gene, which still appears to be the most common genetic variant in the U.S. and western Europe. More than 16 other genetic variants have since been identified, sometimes with specific regional distributions.

At the University of Kentucky, a multidisciplinary team of clinicians and scientists is investigating a therapy for one particular genetic type of ALS that seems to be clustered in central Appalachia. Dr. Edward Kasarskis, director of UK's ALS Multidisciplinary Clinic, discovered the phenomenon by chance, when two ALS patients with the same last name and hometown came into his clinic—15 years apart. Not long after he treated the second patient, her son showed up in his clinic with ALS. Over time, as Kasarskis saw more ALS patients from the same geographic areas—which he was familiar with because of his love of hiking—he started to suspect that something genetic might be at play.

"The discovery owes credit, at least partially, to attention to maps and backpacking," Kasarskis said. "And if you weren't treating patients in the same place over a long period of time, you wouldn't notice these patterns."

Kasarksis came to discover a trend of ALS cases caused by a mutation in the FUS gene, which regulates MnSOD, the major antioxidant defense enzyme located in the mitochondria of motor neuron cells. People with this specific FUS mutation don't have enough of the MnSOD enzyme, which means their motor neurons in the spinal cord break down from oxidative stress and become unable to carry messages from the brain to the muscles.

Investigation into public records allowed Kasarskis' research team to trace the extended family with FUS-related ALS case back to Lee County, Virginia, in the 1800s. Strangely, the public records, which also identify descendants and relatives of people known to have ALS, have sometimes aided in diagnosis. More than once, an ALS patient has shown up in Kasarskis' clinic, and he's recognized their name from genealogy records, allowing him to facilitate a precise genetic diagnosis.

"There are really so few of these patients—it's unique in our region. Now I ask all my ALS patients if their ancestors came from this part of Virginia," he said. He's also spent extended time meeting with communities in the region, providing ALS education and collecting DNA samples.

As a clinician and a scientist, Kasarskis recognized that studying ALS through this particular genetic mutation would allow for robust and tightly controlled laboratory study, including the use of animal models and pluripotent stem cells differentiated into motor neurons. To conduct such research, he teamed up with two other UK scientists, Daret St. Clair, Ph.D., professor of toxicology and cancer biology and associate director of basic science for the UK Markey Cancer Center, and Haining Zhu, Ph.D., professor of molecular and cellular biochemistry, to investigate a targeted approach to this particular type of ALS. Together, they are leading the TRANSLATE study (Treatment of FUS-related ALS with Betamethasone), which explores whether the FDA-approved drug betamethasone can increase the MnSOD enzyme that protects against oxidative stress in patients with FUS-related ALS. The research team also includes experts in pharmacology, physical therapy, and nursing.

"This clinical trial involves several labs and types of expertise – it's ultra-collaborative. But our clinic is also collaborative and multidisciplinary. It's the kind of care these patients need, so it flows naturally into the research questions," Kasarskis said.

The collaboration between Kasarskis and St. Clair precedes the TRANSLATE study, and also began through a stroke of coincidence. While the FUS gene was identified as a cause of familial ALS in 2009, St. Clair's work had already demonstrated the FUS protein was involved with the MnSOD enzyme, though she hadn't connected it to ALS. The TRANSLATE study, which is supported by the UK Multidisciplinary Value Program, had its roots in this collaboration. The team screened hundreds of FDA-approved drugs that could potentially increase the antioxidant capacity of cells. The screening process stemmed from a project in St. Clair's lab at the Markey Cancer Center, where she was trying to find drugs that were nontoxic and whose antioxidant properties could reduce side-effects of cancer therapy.

"During the screening process, we found that one of these drugs being used extensively is betamethasone. It's used in all kinds of inflammatory diseases, it's very non-toxic so you can give short-term, high doses without problems for patients, and it has a long history of use for other conditions. And that's how the TRANSLATE clinical trial began," St. Clair said.

In the trial, participants with FUS-related ALS are given doses of betamethasone via injection, and then blood and antioxidant measurements are taken to see if the intended effect has been achieved. The research team is hoping to enroll ten participants who have active FUS-related ALS or are carriers. Then, after proving the research concept, the team will determine if this approach could benefit patients with other types of ALS.

"We think that this benefit may not be limited to this particularly focused group of ALS , but that it could also be applicable in the larger ALS population, which has a similar component of mitochondria damage from oxidative stress," St. Clair said.

Explore further: UK study provides insight into cancer progression

Related Stories

UK study provides insight into cancer progression

February 22, 2012
The University of Kentucky has announced that Dr. Daret St. Clair, the James Graham Brown Endowed Chair and professor of toxicology, has published the first comprehensive study that provides insight into the relationship ...

New ALS gene points to common role of cytoskeleton in disease

March 21, 2018
An international team of researchers led by John Landers, PhD, at UMass Medical School, and Bryan Traynor, MD, PhD, at the National Institute on Aging at the National Institutes of Health (NIH), has identified KIF5A as a ...

Scientists identify mutation in SIGMAR1 gene linked to juvenile ALS

August 12, 2011
Researchers from the Kingdom of Saudi Arabia have identified a mutation on the SIGMAR1 gene associated with the development of juvenile amyotrophic lateral sclerosis (ALS). Study findings published today in Annals of Neurology, ...

Internists play a vital role in identifying patients for genetic counseling for cancer risk

October 30, 2017
Patients at high risk for familial cancer, history of cancer at a young age, or history of multiple cancer occurrences may be referred to genetic counseling for genetic testing from the primary care office, which makes internists ...

ALS study reveals role of RNA-binding proteins

October 20, 2016
Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

Recommended for you

Psychiatric disorders share an underlying genetic basis

June 21, 2018
Psychiatric disorders such as schizophrenia and bipolar disorder often run in families. In a new international collaboration, researchers explored the genetic connections between these and other disorders of the brain at ...

Deep data dive helps predict cerebral palsy

June 21, 2018
When University of Delaware molecular biologist Adam Marsh was studying the DNA of worms living in Antarctica's frigid seas to understand how the organisms managed to survive—and thrive—in the extremely harsh polar environment, ...

Genetic variation in progesterone receptor tied to prematurity risk, study finds

June 21, 2018
Humans have unexpectedly high genetic variation in the receptor for a key pregnancy-maintaining hormone, according to research led by scientists at the Stanford University School of Medicine. The finding may help explain ...

Shared genetics may shape treatment options for certain brain disorders

June 20, 2018
Symptoms of schizophrenia and bipolar disorder, including psychosis, depression and manic behavior, have both shared and distinguishing genetic factors, an international consortium led by researchers from Vanderbilt University ...

Scientists unravel DNA code behind rare neurologic disease

June 20, 2018
Scientists conducting one of the largest full DNA analyses of a rare disease have identified a gene mutation associated with a perplexing brain condition that blinds and paralyzes patients.

Simple sugar delays neurodegeneration caused by enzyme deficiency

June 20, 2018
A new therapeutic approach may one day delay neurodegeneration typical of a disease called mucopolysaccharidoses IIIB (MPS IIIB). Neurodegeneration in this condition results from the abnormal accumulation of essential cellular ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Anonym437861
not rated yet Jun 19, 2018
The Rilutek (riluzole) did very little to help him. The medical team did even less. His decline was rapid and devastating. The psychological support from the medical centre was non-existent and if it were not for the sensitive care and attention of his primary physician, he would have died . There has been little if any progress in finding a cure or reliable treatment. So this year his primary physician suggested we started him on Natural Herbal Gardens ALS Herbal mixture which eased his anxiety a bit,We ordered their ALS herbal treatment after reading alot of positive reviews, i am happy to report this ALS herbal treatment reversed my dad condition. His quality of life has greatly improved and every one of his symptoms including difficulty in walking and slurred speech are gone. Their official web site is ww w. naturalherbalgardens. c om He will be 74 soon and can now go about his daily activities

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.