Compounds kill C. diff, don't affect other gut bacteria in vitro

June 28, 2018 by Tracey Peake, North Carolina State University
Compounds kill C. diff, don’t affect other gut bacteria in vitro
C. diff. Credit: Renee Fox

NC State researchers developed a drug-testing pipeline to help identify compounds that worked against the three stages of Clostridium difficile infection, and found that a compound that holds promise for treating antibiotic-resistant bacteria may also be able to control C. difficile infections by killing the harmful bacteria without affecting other bacteria in the gut.

Clostridium difficile, or C. diff, is a bacterium that can cause painful and sometimes fatal infections: it is responsible for over 450,000 infections and 29,000 deaths annually in the United States. C. diff exists in the environment as a dormant spore. In a healthy gut other microbes within the gut keep C. diff in check. However, when the fail to keep C. diff in check; for example, when someone has taken antibiotics that kill off the "good" gut , the spores germinate, grow and produce toxins that damage the large intestine.

"The Catch-22 of C. diff is that the antibiotics that treat it exacerbate the problem by also eliminating bacteria that keep C. diff from growing," says Casey Theriot, an assistant professor of infectious disease at NC State. "So when we look for compounds that can be effective against C. diff, we have to look at a number of factors, including the compound's effect on the rest of gut microbiota."

Theriot and her team, led by Rajani Thanissery, created a small molecule pipeline that addressed those factors to help researchers identify compounds that could be used against C. diff.  The pipeline tested compounds against three different stages of the C. diff life cycle: growth, production and sporulation, as well as against other gut bacteria. The goal was to screen and select compounds that could inhibit one or all of the steps in the C. diff life cycle.

One of the small molecules she tested – 2-aminoimidazole (2-AI) – gave her some surprising results. 2-AI was developed by former NC State professors John Cavanagh and Christian Melander. The compound, derived from sea sponges, is effective against like MRSA. It works on these bacteria primarily by suppressing their ability to form biofilms or produce toxins, rather than killing the bacteria outright.

Thanissery screened eleven 2-AI molecules (compounds 1 through 11), provided by Daina Zeng and Raul Doyle at Agile Sciences, against C. diff in vitro. The molecules she screened were selected for their ability to inhibit C. diff growth, toxin activity and sporulation. Three molecules ( 1, 2, and 3) eliminated C. diff, but did not affect other bacteria. Compounds 4, 7, 9, and 11 inhibited toxin activity without affecting the growth of C. diff strains or the other microbiota.

"The results were both encouraging and surprising – we weren't expecting the molecules to kill C. diff, since they primarily inhibit virulence factors," Theriot says. "Our next steps will be to look more closely at the mechanisms by which 2-AI inhibits toxin activity.

"We were also pleased that our testing pipeline was able to successfully identify that demonstrated activity against different aspects of C. diff infection. Hopefully other researchers can use our pipeline to screen future therapeutics in the lab before moving into preclinical animal models."

The research appears in appears in Frontiers in Microbiology.

Explore further: A moveable feast: Antibiotics give C. diff a nutrient-rich environment, no competition

More information: Rajani Thanissery et al. A Small Molecule-Screening Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against Clostridium difficile, Frontiers in Microbiology (2018). DOI: 10.3389/fmicb.2018.01206

Related Stories

A moveable feast: Antibiotics give C. diff a nutrient-rich environment, no competition

March 28, 2018
Using a mouse model, researchers from North Carolina State University have found that antibiotic use creates a "banquet" for Clostridium difficile (C. diff), by altering the native gut bacteria that would normally compete ...

Antibiotics pave way for C. diff infections by killing bile acid-altering bacteria

January 6, 2016
New research from North Carolina State University and the University of Michigan finds that bile acids which are altered by bacteria normally living in the large intestine inhibit the growth of Clostridium difficile, or C. ...

Bacterial in-fighting provides new treatment for hospital infections

September 6, 2017
A bacteria that is a leading cause of death worldwide from hospital acquired infections following antibiotic treatment looks set to be brought down through its own sibling rivalry.

New C. diff treatment reduces recurrent infections by 40 percent

January 25, 2017
A new treatment for Clostridium difficile (C.diff) infections reduces recurrent infections by nearly 40%, a large study has found.

Gastric medications increase risk for recurrence of Clostridium difficile infection

March 27, 2017
Researchers at Mayo Clinic have found patients who use gastric suppression medications are at a higher risk for recurrent Clostridium difficile (C-diff) infection. C-diff is a bacterium that can cause symptoms ranging from ...

C. diff study provides insight into antibiotic resistance and risks for infection

February 4, 2016
Exposure to specific antibiotics is linked to the development of certain strains of antibiotic-resistant C. difficile, one of the fastest growing bacteria superbugs, according to a new study published by Stuart Johnson, MD, ...

Recommended for you

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Japanese team creates human oogonia using human stem cells in artificial mouse ovaries

September 21, 2018
A team of researchers with members from several institutions in Japan has successfully generated human oogonia inside of artificial mouse ovaries using human stem cells. In their paper published in the journal Science, the ...

A new approach to developing a vaccine against vivax malaria

September 21, 2018
A novel study reports an innovative approach for developing a vaccine against Plasmodium vivax, the most prevalent human malaria parasite outside sub-Saharan Africa. The study led by Hernando A. del Portillo and Carmen Fernandez-Becerra, ...

Researchers explore how changes in diet alter microbiome in artificial intestine

September 21, 2018
Using an artificial intestine they created, researchers have shown that the microbiome can quickly adapt from the bacterial equivalent of a typical western diet to one composed exclusively of dietary fats. That adaptation ...

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.