Genetic discovery will help clinicians identify aggressive versus benign bone tumors

June 12, 2018, Wellcome Trust Sanger Institute

The first genetic marker for the bone tumour, osteoblastoma, has been discovered by scientists at the Wellcome Sanger Institute and their collaborators. Whole-genome and transcriptome sequencing of human bone tumours revealed that a genetic change that affects the transcription factor, FOS, is a hallmark mutation of osteoblastoma.

The results, published in Nature Communications, will help clinicians correctly distinguish benign osteoblastoma tumours from aggressive tumours and direct the correct treatment.

Osteoblastoma is the most common benign tumour of the , mainly affecting children and adults between the ages of 10 and 25. It is treated by surgical removal of the tumour, however the diagnosis of osteoblastoma can be challenging. Under the microscope, osteoblastoma tumours can look very similar to osteosarcoma, an aggressive form of bone cancer that requires extensive treatment, sometimes including amputation or significant surgery and chemotherapy.

In this new study, scientists from the Wellcome Sanger Institute and their collaborators at the UCL Cancer Institute and Francis Crick Institute discovered a genetic mutation that distinguishes osteoblastoma from osteosarcoma.

The team carried out whole genome and whole transcriptome sequencing on five osteoblastoma tumours and one osteoid osteoma tumour.

Researchers discovered a mutation that affects FOS, a transcription factor that turns on and off genes to ensure they are expressed in the right cell at the right time, as well as its relative, FOSB.

When the team extended their results in a study of 55 cases they found that mutations in FOS and FOSB are ubiquitous across osteoblastoma and osteoid osteoma.

To explore whether their result could be useful as diagnostic markers for osteoblastoma, scientists examined the whole genome sequences of 55 osteosarcoma cases, and found none of the samples harboured mutations in FOS or FOSB. When the team analysed over 2,500 non-osteoblastoma tumours, they again did not find similar mutations, meaning the FOS and FOSB mutations are specific to osteoblastoma.

Dr. Sam Behjati, co-lead author from the Wellcome Sanger Institute and University of Cambridge, said: "The main clinical challenge when diagnosing osteoblastoma can be to reliably distinguish these tumours from osteosarcoma. These two forms of bone require very different treatments: osteoblastoma tumours just need removing to ease symptoms, whereas osteosarcomas is treated aggressively with surgery and intensive chemotherapy. For the first time, we have discovered a specific mutation that defines osteoblastoma."

Dr. Matthew Fittall, co-first author from the Francis Crick Institute, UCL Cancer Institute and Wellcome Sanger Institute, said: "We have known for a while that FOS is involved in the progression of bone tumours, however we have not found mutations of FOS in human bone-forming tumours before. Using genomic sequencing we have shown that in FOS and its relative FOSB are diagnostic markers of osteoblastoma."

Professor Adrienne Flanagan, co-lead author from the UCL Cancer Institute and Royal National Orthopaedic Hospital NHS Trust, said: "Genomics is transforming our understanding of cancers. Our discovery of the genetic mutation that characterises osteoblastoma will help clinicians diagnose it with more confidence and direct the correct treatment."

Explore further: Existing drugs could benefit patients with bone cancer, genetic study suggests

More information: Matthew W. Fittall et al, Recurrent rearrangements of FOS and FOSB define osteoblastoma, Nature Communications (2018). DOI: 10.1038/s41467-018-04530-z

Related Stories

Existing drugs could benefit patients with bone cancer, genetic study suggests

June 23, 2017
A subgroup of patients with osteosarcoma - a form of bone cancer - could be helped by an existing drug, suggest scientists from the Wellcome Trust Sanger Institute and their collaborators at University College London Cancer ...

Novel mutations define two types of bone tumor

October 27, 2013
Scientists have made a rare discovery that allows them to attribute two types of tumour almost entirely to specific mutations that lie in two related genes.

First seeds of kidney cancer sown in adolescence

April 12, 2018
The earliest critical genetic changes that can lead to kidney cancer have been mapped by scientists. The first key genetic change occurs in childhood or adolescence, and the resulting cells follow a consistent path to progress ...

New drug hope for rare bone cancer patients

October 12, 2017
Patients with a rare bone cancer of the skull and spine - chordoma - could be helped by existing drugs, suggest scientists from the Wellcome Trust Sanger Institute, University College London Cancer Institute and the Royal ...

Study reveals every bowel tumor and bowel cancer cell have unique genetic fingerprints

April 11, 2018
New research on bowel cancer has shown that every tumour is different, and that every cell within the tumour is also genetically unique. In the first study of its kind, researchers from the Wellcome Sanger Institute, UK and ...

Immunotherapy treatment option for selected breast cancer patients, genetic study suggests

September 13, 2017
Immunotherapy drugs could help some breast cancer patients based on the genetic changes in their tumours, researchers at the Wellcome Trust Sanger Institute and their collaborators find. Published today (13 September) in ...

Recommended for you

Novel therapy makes oxidative stress deadly to cancer

June 21, 2018
Oxidative stress can help tumors thrive, but one way novel cancer treatments work is by pushing levels to the point where it instead helps them die, scientists report.

Biologists discover how pancreatic tumors lead to weight loss

June 20, 2018
Patients with pancreatic cancer usually experience significant weight loss, which can begin very early in the disease. A new study from MIT and Dana-Farber Cancer Institute offers insight into how this happens, and suggests ...

Researchers find 11 genes responsible for the spread of cancer

June 20, 2018
A groundbreaking discovery by University of Alberta researchers has identified previously-unknown therapeutic targets that could be key to preventing the spread of cancer.

'Kiss of death' cancer: How computational geeks may have uncovered a therapy for a deadly disease

June 19, 2018
It's called the 'kiss of death'. Triple negative breast cancer has no targeted drug therapy and, as such, the only hope for these patients is chemotherapy. Triple negative breast cancer is aggressive and deadly. Patients ...

Ovarian cancer cells switched off by 'unusual' mechanism

June 19, 2018
Scientists at the Ovarian Cancer Action Research Centre at Imperial College London have discovered a mechanism that deactivates ovarian cancer cells.

Team discovers gene mutations linked to pancreatic cancer

June 19, 2018
Six genes contain mutations that may be passed down in families, substantially increasing a person's risk for pancreatic cancer. That's according to Mayo Clinic research published in the June 19 edition of the JAMA. However, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.