Visual worlds in mirror and glass

June 11, 2018, Toyohashi University of Technology
(A) Mirror/glass object (left-hand column) and dynamic information when objects are rotated to the left (right-hand column). The glass material contains more components moving in the opposite direction (right) to the rotation direction (left). (B) Comparison between the developed model and human perception. Each dot represents a moving picture used in the experiment. The X axis shows the model output and the Y axis shows the subject's response regarding how much light seemed to reflect or pass through in each moving picture. Credit: Toyohashi University of Technology

The clear, colorful rays of light characteristic of precious metals and jewels give us a rich sense of their quality. This is due to our ability to perceive materials, which provides an estimate of the surface condition and material of objects. Humans tend to attribute value to the phenomenon of light reflecting from or passing through the surface of an object in a complex manner. In fact, humans as a species have sought good material properties since the dawn of time. Based on this knowledge, researchers in various fields of study including neuroscience, psychology and engineering have strived to uncover the processes related to material perception that occur in our brain.

Reflective materials are those such as mirrors and polished metals that have a surface on which light is specularly reflected. Transparent materials are materials such as glass and ice through which light permeates and refracts. The images that appear on the surfaces of these materials greatly vary in complex ways depending on what surrounds them. Because these objects can produce a countless number of images, the way in which humans distinguish between mirror and glass was unknown.

In everyday life, a viewed and the viewer are hardly ever stationary at the same time. As such, it was believed that the on sent to the brain when an object is viewed also included latent dynamic information. For instance, when a mirror (reflective material) rotates, humans are only able to perceive dynamic information on the front side of the object. However, when glass (transparent material) rotates, humans can perceive dynamic information at both the front and rear (opposite information) of the object because the object is transparent (FIG. 1A, moving picture 1).

Visualizations of motion components in object rotation direction. The top column shows the mirror material objects and the bottom column shows the glass material objects. Color maps indicate the magnitude of the motion components in each pixel. Red indicates the left direction and blue indicates the right direction. Credit: Toyohashi University of Technology

The research team came to the hypothesis that humans discriminate between reflective/ by using dynamic information from those materials as a cue among a vast possible selection of information. The team empirically measured the degree to which people perceive and discriminate between moving objects made of reflective and transparent materials, and used that data to develop and test a model for discriminating between reflective/transparent materials (FIG. 1B). This model correlates closely with and suggests that material perception in humans can be accurately predicted.

Lead author and Ph.D. student Hideki Tamura explains: "Because humans can distinguish between the various materials that are around them such as metal, glass and wood with very high accuracy, we initially thought that the brain carries out complex information processing to achieve this task. However, our brains may actually only perform simple information processing using cues that summarize the information we need. This discovery is expected to be applied to material property reproduction technology based on the mechanism of our brains."

Research team leader Professor Shigeki Nakauchi says, "We come across mirrors and glass all the time in our daily lives, but they are actually very peculiar materials in terms of material perception because they do not possess any color and merely distort whatever is around them. We are able to perceive and enjoy mirror-like and glass-like properties and the other various materials in our world by way of dynamic information, which initially seemed unrelated to this perception."

This research suggests that humans use efficient cues when discriminating between . More specifically, humans can apply these cues to estimate or express the material state of an object using summarized information without needing to use all the information in, for example, a moving picture. The results of this research are therefore expected to be used in material property measurement systems and material reproduction technology that take insight from the mechanism of visual perception.

Explore further: Throwing light on the brain's perception of transparency

More information: Hideki Tamura et al, Dynamic Visual Cues for Differentiating Mirror and Glass, Scientific Reports (2018). DOI: 10.1038/s41598-018-26720-x

Related Stories

Throwing light on the brain's perception of transparency

September 30, 2016
Researchers have created a new optical illusion that helps reveal how our brains determine the material properties of objects – such as whether they are transparent, shiny, matte or translucent – just from looking at ...

Do people subconsciously judge face-likeness?

May 14, 2018
The research team at the Visual Perception and Cognition Laboratory of the Toyohashi University of Technology has revealed that face-likeness is judged by early visual processing at around 100 milliseconds after viewing an ...

Recommended for you

Protein droplets keep neurons at the ready and immune system in balance

August 15, 2018
Inside cells, where DNA is packed tightly in the nucleus and rigid proteins keep intricate transport systems on track, some molecules have a simpler way of establishing order. They can self-organize, find one another in crowded ...

Self-control develops gradually in adolescent brain

August 15, 2018
Different parts of the brain mature at different times, which may help to explain impulsive behaviors in adolescence, suggest researchers from Penn State and the University of Pittsburgh.

Research reveals that what we see is not always what we get

August 15, 2018
Researchers are helping to explain why some people anticipate and react to fast-moving objects much quicker than others.

New approach to treating chronic itch

August 15, 2018
Researchers at the University of Zurich have discovered a new approach to suppressing itch by targeting two receptors in the spinal cord with the right experimental drug. In a series of experiments in mice and dogs, they ...

Immune cells in the brain have surprising influence on sexual behavior

August 14, 2018
Researchers have found a surprising new explanation of how young brains are shaped for sexual behavior later in life.

Scientists pinpoint brain networks responsible for naming objects

August 14, 2018
Scientists at The University of Texas Health Science Center at Houston (UTHealth) have identified the brain networks that allow you to think of an object name and then verbalize that thought. The study appeared in the July ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.