CRISPR genome editing technology can correct alpha-1 antitrypsin deficiency

July 2, 2018, Mary Ann Liebert, Inc
Credit: Mary Ann Liebert, Inc., publishers

Groundbreaking research demonstrates proof-of-concept for using CRISPR-Cas9 genome editing technology to correct the gene mutation responsible for alpha-1 antitrypsin (AAT) deficiency, successfully making a targeted gene correction in the livers of affected mice that restored at least low levels of normal AAT. In the studies, both published in Human Gene Therapy.

The article entitled "In vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency " was coauthored by Terence Flotte, Editor-in-Chief of Human Gene Therapy, and Wen Xue, both from the University of Massachusetts Medical School (Worcester), together with a team of researchers from UMass Medical School, Tongji University (Shanghai, China), and Wuhan University (China). The re-searchers co-injected two adeno-associated viral (AAV) vectors: one to deliver the Cas9 component of the CRISPR-Cas9 system; and the second encoding an AAT gene-targeted guide RNA and carrying a homology-dependent repair template.

Shen Shen, Editas Medicine, together with researchers from Editas and St. Louis Uni-versity School of Medicine (MO) coauthored the article "Amelioration of Alpha-1 An-titrypsin Deficiency Diseases with Genome Editing in Transgenic Mice." They demon-strated both a gene knockdown approach, in which they reduced the expression of the toxic mutated AAT in liver cells by more than 98%, and the use of a dual-vector system capable of achieving a 4-5% nucleotide correction at the site of the target mutation.

"Those two back-to-back papers published in Human Gene Therapy represent an im-portant milestone in AATD gene , demonstrating for the first time that in vivo ge-nome editing by rAAV-mediated delivery of CRISPR-Cas9 holds the potential for a novel therapeutic modality to treat AATD," says Human Gene Therapy Editor Guang-ping Gao, Ph.D., Gene Therapy Center & Department of Microbiology and Physiological Systems, University of Massachusetts Medical School.

Explore further: Will AAV vectors have a role in future novel gene therapy approaches?

More information: Chun-Qing Song et al, In vivo Genome Editing Partially Restores Alpha1-Antitrypsin in a Murine Model of AAT Deficiency, Human Gene Therapy (2018). DOI: 10.1089/hum.2017.225

Related Stories

Will AAV vectors have a role in future novel gene therapy approaches?

March 20, 2017
Recombinant adeno-associated virus (rAAV) vectors for delivering therapeutic genes have demonstrated their safety in multiple diseases and clinical settings over the years and are a proven and effective tool that can be used ...

Genome-editing tool could increase cancer risk

June 11, 2018
Therapeutic use of gene editing with the CRISPR-Cas9 technique may inadvertently increase the risk of cancer, according to a new study from Karolinska Institutet, Sweden, and the University of Helsinki, Finland, published ...

Stem cell-derived organoids for testing gene delivery to retinal and photoreceptor cells

June 13, 2018
A new study that compared six of the most promising adeno-associated viral (AAV) gene therapy vectors in human retinal organoid models showed clear distinctions in the efficiency of gene transfer to both retinal pigment epithelial ...

New gene editing tools force renewed debate over therapeutic germline alteration

May 1, 2015
Recent evidence demonstrating the feasibility of using novel CRISPR/Cas9 gene editing technology to make targeted changes in the DNA of human embryos is forcing researchers, clinicians, and ethicists to revisit the highly ...

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Recommended for you

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

Decrease in specific gene 'silencing' molecules linked with pediatric brain tumors

November 12, 2018
Experimenting with lab-grown brain cancer cells, Johns Hopkins Medicine researchers have added to evidence that a shortage of specific tiny molecules that silence certain genes is linked to the development and growth of pediatric ...

Recessive genes explain only small fraction of undiagnosed developmental disorders

November 8, 2018
The Deciphering Developmental Disorders study has discovered that only a small fraction of rare, undiagnosed developmental disorders in the British Isles are caused by recessive genes. The study by researchers from the Wellcome ...

A look at how colds and chronic disease affect DNA expression

November 8, 2018
We're all born with a DNA sequence that encodes (in the form of genes) the very traits that make us, us—eye color, height, and even personality. We think of those genes as unchanging, but in reality, the way they are expressed, ...

Mutant protein tackles DNA guardian to promote cancer development

November 7, 2018
Melbourne scientists have discovered how tumour development is driven by mutations in the most important gene in preventing cancer, p53.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.