Neurons can carry more than one signal at a time

July 18, 2018 by Kara Manke, Duke University
A Duke team found that individual neurons can encode information about multiple stimuli simultaneously, much the same way electronics like cell phones sort signals by frequency. Credit: Cruger Creations

Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between sending pieces of each message.

New research from Duke University shows that in the brain may be capable of a similar strategy.

In an experiment examining how monkeys respond to sound, a team of neuroscientists and statisticians found that a single neuron can encode information from two different sounds by switching between the signal associated with one sound and the signal associated with the other sound.

"The question we asked is, how do neurons preserve information about two different stimuli in the world at one time?" said Jennifer Groh, professor in the department of psychology and neuroscience, and in the department of neurobiology at Duke.

"We found that there are periods of time when a given neuron responds to one stimulus, and other periods of time where it responds to the other," Groh said. "They seem to be able to alternate between each one."

The results may explain how the brain processes complex information from the world around us, and may also provide insight into some of our perceptual and cognitive limitations. The results appeared July 13 in Nature Communications.

To make the discovery, Groh and her team collaborated with Surya Tokdar, associate professor of statistical science at Duke, to develop and apply several new methods of analysis to their experimental data.

Most studies of single neuron behavior investigate only one stimulus at a time, looking at how an individual neuron responds when the subject is played a single note or shown a single image.

But reality is rarely so simple. Our brains are capable of processing multiple stimuli at once—such as listening to a friend at a party with music playing in the background, or picking out the buzz of a cicada from a symphony of trilling insects.

"It is not obvious how you go from single neurons encoding single objects, to neurons encoding multiple objects," said Valeria Caruso, a research scientist in Duke's department of psychology and neuroscience. "We wanted to provide an intermediate step, looking at how neurons encode small groups of objects."

To complicate matters, single-neuron studies have shown that many are broadly tuned, meaning each is capable of responding to sounds at a range of different frequencies. For example, the same neurons triggered by your friend's voice may also be triggered by the notes of your favorite tunes.

"If I am a neuron and I'm able to respond to both an image of a pillow and the couch it is resting on, how does the brain infer that both the pillow and the couch are present?" Groh said.

In the experiment, the researchers sat monkeys in a darkened room and trained them to look in the direction of sounds that they heard. The researchers played either one sound or two sounds, with each sound at a different frequency and coming from different locations.

When the researchers played two sounds together, the monkeys looked first in the direction of one sound, and then in the direction of the other sound, indicating that the monkeys recognized the existence of two distinct sounds.

To find out how the monkeys' brains encoded both sounds simultaneously, the team used electrodes in the inferior colliculus, a key point in the brain's auditory pathway, to measure the small spikes in the local electric field caused by neurons firing.

The researchers investigated the response of single neurons to both individual sounds and to combined sounds. The standard practice in the field is to count how many spikes occur over a period of time and compute the average of a number of trials, Groh said. But this method obscures any fluctuations in activity that might indicate the neurons are switching back and forth between different stimuli.

The team applied a combination of advanced statistical methods, including a new method called a Dynamic Admixture Point Process model developed by Tokdar and his team, to extract more detailed patterns from the data.

They found that a single neuron could respond to one sound with one firing rate, and a second sound with a different firing rate. When both sounds were played simultaneously, it appeared to fluctuate between the two firing rates. Sometimes the fluctuations were fast enough that the neurons switched within a half second of the presentation of the sound, and in other cases the switching was slower.

The team repeated the statistical analysis on data from experiments conducted by Winrich Freiwald, a professor of neurosciences and behavior at The Rockefeller University. In these experiments, Freiwald investigated the firing rates of single neurons in a visual area of the cortex in response to images of one face or two faces. The analysis revealed the same switching pattern when two faces were present.

These findings provide clues to other circumstances where the brain has to do more than one thing at a time with a limited set of neurons. For example, our working memory—the number of things we can hold in our minds at one time—is constrained to around five to seven items. While these experiments do not directly test working memory, the researchers think further studies may help explain these restrictions.

"Our working memory system is quite limited and no one really knows why," Groh said. "Perhaps that limit arises from some kind of cycling behavior where you are coding one thing at a time, and across a period of time, the number of things you can represent depends on how long you need to represent each one and how rapidly you can switch."

Explore further: How vision captures sound now somewhat uncertain

More information: Valeria C. Caruso et al, Single neurons may encode simultaneous stimuli by switching between activity patterns, Nature Communications (2018). DOI: 10.1038/s41467-018-05121-8

Related Stories

How vision captures sound now somewhat uncertain

January 16, 2014
(Medical Xpress)—When listening to someone speak, we also rely on lip-reading and gestures to help us understand what the person is saying.

Biomedical engineer finds how brain encodes sounds

November 9, 2017
When you are out in the woods and hear a cracking sound, your brain needs to process quickly whether the sound is coming from, say, a bear or a chipmunk. In new research published in PLoS Biology, a biomedical engineer at ...

Visual cues amplify sound

February 13, 2018
Looking at someone's lips is good for listening in noisy environments because it helps our brains amplify the sounds we're hearing in time with what we're seeing, finds a new UCL-led study.

Why we look at the puppet, not the ventriloquist

August 30, 2013
(Medical Xpress)—As ventriloquists have long known, your eyes can sometimes tell your brain where a sound is coming from more convincingly than your ears can.

When the eyes move, the eardrums move, too

January 23, 2018
Simply moving the eyes triggers the eardrums to move too, says a new study by Duke University neuroscientists.

Team glimpses how the brain transforms sound

April 23, 2015
When people hear the sound of footsteps or the drilling of a woodpecker, the rhythmic structure of the sounds is striking, says Michael Wehr, a professor of psychology at the University of Oregon.

Recommended for you

How returning to a prior context briefly heightens memory recall

December 11, 2018
Whether it's the pleasant experience of returning to one's childhood home over the holidays or the unease of revisiting a site that proved unpleasant, we often find that when we return to a context where an episode first ...

The importins of anxiety

December 11, 2018
According to some estimates, up to one in three people around the world may experience severe anxiety in their lifetime. In a study described today in Cell Reports, researchers at the Weizmann Institute of Science have revealed ...

Neurons in the brain work as a team to guide movement of arms, hands

December 11, 2018
The apparent simplicity of picking up a cup of coffee or turning a doorknob belies the complex sequence of calculations and processes that the brain must undergo to identify the location of an item in space, move the arm ...

The richer the reward, the faster you'll likely move to reach it, study shows

December 11, 2018
If you are wondering how long you personally are willing to stand in line to buy that hot new holiday gift, scientists at Johns Hopkins Medicine say the answer may be found in the biological rules governing how animals typically ...

Using neurofeedback to prevent PTSD in soldiers

December 11, 2018
A team of researchers from Israel, the U.S. and the U.K. has found that using neurofeedback could prevent soldiers from experiencing PTSD after engaging in emotionally difficult situations. In their paper published in the ...

Study: Age, race differences determine risk of stroke in women and men

December 11, 2018
A new study found that, between the ages of 45 and 74 years, white women were less likely to have a stroke than white men, but at age 75 and older, there was no difference in stroke risk between white women and men. In contrast, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.