Study reveals how shift work disrupts metabolism

July 9, 2018, Washington State University
Study co-author Elena Skornyakov loads a blood sample into the cold centrifuge at the sleep laboratory at WSU Health Sciences Spokane. Credit: Cori Kogan, Washington State University

Working night shifts or other nonstandard work schedules increases your risk of becoming obese and developing diabetes and other metabolic disorders, which ultimately also raises your risk of heart disease, stroke and cancer.

Exactly why this happens has been unclear, but a new study conducted at Washington State University (WSU) has brought scientists closer to finding the answer.

Published in this week's online edition of the Proceedings of the National Academy of Sciences, the study dispels the belief that the metabolic disruption in shift workers is driven primarily by the brain's master clock, which normally keeps our bodies on a day-night cycle and uses light cues to synchronize the rhythms of the body's organs and tissues. Instead, the study revealed that separate biological clocks (so-called peripheral oscillators) in the liver, gut and pancreas have a mind of their own.

Working with colleagues at the University of Surrey, the WSU team collected from healthy volunteers who had just completed either a simulated day shift or a simulated night shift schedule. The investigators analyzed the blood samples for metabolites—products of chemical reactions involved in digestion, such as the breakdown and oxidization of food molecules, as well as in other metabolic processes in cells and organs. They found that, following the night shift schedule, 24-hour rhythms in metabolites related to the digestive system had shifted by a full 12 hours, even though the master biological clock in participants' brains had only moved by about 2 hours.

Biological clocks in digestive organs

"No one knew that biological clocks in people's digestive organs are so profoundly and quickly changed by schedules, even though the brain's master clock barely adapts to such schedules," said co-senior author Hans Van Dongen, director of the WSU Sleep and Performance Research Center and a professor in the Elson S. Floyd College of Medicine. "As a result, some biological signals in shift workers' bodies are saying it's day while other signals are saying it's night, which causes disruption of metabolism."

Van Dongen said the next step is to find out whether the shifted metabolite rhythms are driven by the shift workers' altered sleep/wake schedules, the changed timing of their food intake, or both. Once that is known, scientists could try to pinpoint the underlying cellular and/or hormonal processes, which would support the development of new treatments to resynchronize shift workers' brain and body clocks to prevent negative long-term health consequences.

Long-term health consequences

The research team's work may also have implications for the study of other chronic diseases shift workers are more susceptible to, including and breast, prostate and skin cancer.

"We believe ours is the first study to suggest a mechanism for the connection between shift work and chronic kidney disease," said co-senior author Shobhan Gaddameedhi, an assistant professor in the WSU College of Pharmacy and Pharmaceutical Sciences. He noted that the simulated night shift group had altered rhythms in two metabolites commonly associated with chronic kidney disease—tryptophan and kynurenine.

However, as a cancer biologist, Gaddameedhi first and foremost wants to unravel the link between shift work and cancer.

"It's possible that changes in the metabolism of shift workers are associated with altered activity of cellular processes that may be involved in cancer development later in life," Gaddameedhi said. "Once we understand those cellular processes, we could potentially identify the genes involved and use that knowledge to find ways to prevent cancer in shift workers."

Metabolomics Used to Study Rhythms

The study included 14 participants who each spent seven days inside the sleep laboratory at the WSU Health Sciences Spokane campus. First, half of them completed a three-day simulated night shift schedule, while the rest were on a three-day simulated day shift schedule. Then, after completing their simulated shifts, all participants were kept in a constant routine protocol used to study humans' internally generated biological rhythms independent of any external influences.

During this protocol, they were kept awake for 24 hours in a semireclined posture. They received identical snacks every hour and were kept under constant light exposure and room temperature. Every three hours a blood sample was drawn.

The blood samples were analyzed at the University of Surrey's Metabolomics Core Facility for 132 different metabolites related to metabolism and the digestive system.

"Twenty-seven metabolites followed a 24-hour rhythm during both the simulated night and day shift schedules," said first author Debra Skene, professor of neuroendocrinology at the University of Surrey. "Of these, 24 displayed a dramatic 12-hour shift in rhythm following the simulated night shift schedule, which was not observed following the day shift schedule. This indicated that just three days of being on a night shift schedule has the potential to disrupt metabolism. Pinpointing the disrupted metabolic pathways will help unravel the mechanisms underlying shift work and ."

Explore further: The effect of night shifts—gene expression fails to adapt to new sleep patterns

More information: Debra J. Skene el al., "Separation of circadian- and behavior-driven metabolite rhythms in humans provides a window on peripheral oscillators and metabolism," PNAS (2018). www.pnas.org/cgi/doi/10.1073/pnas.1801183115

Related Stories

The effect of night shifts—gene expression fails to adapt to new sleep patterns

May 7, 2018
Have you ever considered that working night shifts may, in the long run, have an impact on your health? A team of researchers from the McGill University affiliated Douglas Mental Health University Institute (DMHUI) has discovered ...

Moving light-dark exposure could reduce disruption faced by night shift workers

March 28, 2018
New research published in The Journal of Physiology shows that our brain clock can be shifted by light exposure, potentially to align it with night shift patterns. It highlights that a 'one size fits all' approach to managing ...

Untimely immune cell clocks may contribute to obesity and diabetes in shift workers

February 6, 2018
About 15 million Americans don't have a typical nine-to-five workday, and many of these—nurses, firefighters and flight attendants, among many other professions—may see their schedule change drastically one week to the ...

Night shift work linked to an increased risk of obesity

October 4, 2017
In an analysis of 28 published studies, night shift work was associated with a 29% increased risk of becoming obese or overweight. The findings, which are published in Obesity Reviews, suggest that modifying working schedules ...

Eating at night, sleeping by day swiftly alters key blood proteins

May 21, 2018
Staying awake all night and sleeping all day for just a few days can disrupt levels and time of day patterns of more than 100 proteins in the blood, including those that influence blood sugar, energy metabolism, and immune ...

The rhythms of the night?

April 30, 2018
New research published in The Journal of Physiology has illuminated the effects of night-time light exposure on internal body clock processes. This is important for helping those who have poor quality sleep, such as shift ...

Recommended for you

Gut hormone and brown fat interact to tell the brain it's time to stop eating

November 15, 2018
Researchers from Germany and Finland have shown that so-called "brown fat" interacts with the gut hormone secretin in mice to relay nutritional signals about fullness to the brain during a meal. The study, appearing November ...

Brain, muscle cells found lurking in kidney organoids grown in lab

November 15, 2018
Scientists hoping to develop better treatments for kidney disease have turned their attention to growing clusters of kidney cells in the lab. One day, so-called organoids—grown from human stem cells—may help repair damaged ...

How the Tasmanian devil inspired researchers to create 'safe cell' therapies

November 15, 2018
A contagious facial cancer that has ravaged Tasmanian devils in southern Australia isn't the first place one would look to find the key to advancing cell therapies in humans.

Researchers discover important connection between cells in the liver

November 15, 2018
University of Minnesota Medical School researchers have made a discovery which could lead to a new way of thinking about how disease pathogenesis in the liver is regulated, which is important for understanding the condition ...

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.