New small molecules for the treatment of autoinflammatory diseases

July 5, 2018, Ecole Polytechnique Federale de Lausanne
Artistic rendering of the surface of a human dendritic cell, one of the cells of the innate immune system. Credit: National Institutes of Health

EPFL scientists have discovered two small-molecule compound series that can effectively block a central pathway of the innate immune system, offering a promising new way for treating autoinflammatory diseases. The study is published in Nature.

The innate immune is the first line of defense, with cells that quickly identify "foreign" motifs from viruses and bacteria and mount up a counterattack to eliminate them. As a key strategy to sense the presence of pathogens, the cells of the innate immune system use receptors that can identify microbial DNA and in turn activate a protein called STING (STimulator of Interferon Genes). Once activated, STING turns on genes that help cells fight off the infecting pathogen.

Nonetheless, the innate immune system can turn against the body itself, causing a number of diseases, which are referred to as autoinflammatory. But even though the molecules involved in the innate immune system are well studied, developing drugs that act on specific molecules of interest is still a big challenge.

Now, the lab of Andrea Ablasser at EPFL has discovered first-in-class compounds that specifically bind STING and effectively block its activity. The team used a screening assay to find molecules that can suppress STING-mediated cellular activation. From these they extracted two separate compound series that can block STING, both in human and in mouse cells.

To find out the compounds' mechanism of action, the researchers painstakingly mutated several of the amino acids that make up STING in order to find out which ones are targeted by the compounds. Doing so, the scientists identified a conserved transmembrane cysteine, which binds to the compounds irreversibly. As a consequence of this interaction, this particular cysteine residue can no longer undergo palmitoylation – a post-translational modification that attaches a fatty acid (palmitic acid) to STING.

Although we don't know exactly how this chemical process connects to the activity of STING, the scientists observed that when STING was activated in the course of their experiments, it assembled into multimeric clusters – a well-known effect of palmitoylation. This observation adds evidence that palmitoylation is required for STING to perform its role during innate immune responses, presenting another potential target for blocking STING in the context of autoinflammatory .

Finally, the team carried out proof-of-concept pre-clinical studies to test the effect of the compounds on actual autoinflammatory diseases. For this, the scientists used the compounds to treat mice with mutations that constitutively activate STING, thereby producing a type of autoinflammatory disease similar to some seen in humans.

In an exciting finding, treatment with either compound class significantly reduced key pathogenic features in mice. Of importance, an in vitro test on cultured human cells with these also showed efficacy to block the human version of STING further supporting therapeutical potential of these compounds in humans. However, confirmation of this effect would require formal clinical trials.

The discovered compounds are described as "small molecules", which is a term used for molecules with low molecular weight and up to a nanometer in size. In fact, most drugs are small , meaning that the discovered show promise for drug development.

"Our work uncovered an unexpected mechanism to target STING and provided the first proof-of-concept that anti-STING therapies are efficacious in autoinflammatory disease," says Andrea Ablasser. "Beyond specific monogenic autoinflammatory syndromes, the innate immune system is implicated in even broader 'inflammatory' conditions, so we are excited to learn more about the role of STING in human diseases."

Explore further: The STING of death in T cells

More information: Simone M. Haag et al. Targeting STING with covalent small-molecule inhibitors, Nature (2018). DOI: 10.1038/s41586-018-0287-8

Related Stories

The STING of death in T cells

September 5, 2017
The cells of the innate immune system use a signaling pathway comprising STING (Stimulator of interferon genes) to detect DNA from invading viruses and fight them. However, it is unknown if STING triggers the same or different ...

Cell senescence is regulated by innate DNA sensing

July 31, 2017
Cells in the body or in cultures eventually stop replicating. This phenomenon is called "senescence" and is triggered by shortening of telomeres, oxidative stress or genetic damage to the cells, either acute or simply due ...

Researchers reveal crucial immune fighter role of the STING protein

June 18, 2012
Researchers at Weill Cornell Medical College have unlocked the structure of a key protein that, when sensing certain viruses and bacteria, triggers the body's immediate immune response.

Scientists uncover a factor important for Zika virus host species restriction

June 19, 2018
Princeton University researchers Qiang Ding, Alexander Ploss, and colleagues have identified one of the mechanisms by which Zika virus (ZIKV) circumvents immune control to replicate in human cells. The paper detailing this ...

Recommended for you

Thymic tuft cells play key role in preventing autoimmunity, mouse experiments show

July 18, 2018
UC San Francisco researchers were recently surprised to discover fully formed gut and skin cells in the thymus, a lemon-sized organ that sits in front of the heart and is responsible for training the T cells of the immune ...

Autism risk determined by health of mom's gut, research reveals

July 18, 2018
The risk of developing autism-spectrum disorders is determined by the mother's microbiome—the collection of microorganisms that naturally live inside us—during pregnancy, new research from the University of Virginia School ...

New findings suggest allergic responses may protect against skin cancer

July 17, 2018
The components of the immune system that trigger allergic reactions may also help protect the skin against cancer, suggest new findings.

The immune system: T cells are built for speed

July 17, 2018
Without T cells, we could not survive. They are a key component of the immune system and have highly sensitive receptors on their surface that can detect pathogens. The exact way that these receptors are distributed over ...

Broadly acting antibodies found in plasma of Ebola survivors

July 17, 2018
Recent Ebola virus disease (EVD) outbreaks, including the 2013-2016 epidemic that ravaged West Africa and the 2018 outbreak in the Democratic Republic of the Congo, highlight the need for licensed treatments for this often-deadly ...

How protein fragments could help to tackle the cause of hay fever

July 16, 2018
Imperial researchers are looking to protein fragments to help people build up resistance to grass pollen.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.