Researchers reveal crucial immune fighter role of the STING protein

June 18, 2012

Researchers at Weill Cornell Medical College have unlocked the structure of a key protein that, when sensing certain viruses and bacteria, triggers the body's immediate immune response.

In the journal Molecular Cell, scientists describe the double wing-like crystal structure of this key protein, known as STING, which is a soldier on the front-line of the body's defense against . Researchers also show STING in action, displaying evidence of a -- an action that launches the body's .

"Activation of STING is crucial to the ability of the human body to pick out bits of molecules secreted by pathogens, including many different , and alert the human body that they are there. By solving the structure of this protein, we now know how they do this crucial task," says the study's lead author, Dr. Qian Yin, a postdoctoral associate in the laboratory of Dr. Hao Wu, professor of Biochemistry at Weill Cornell Medical College.

"The STING structure provides a remarkable example of the pathogen-host interactions in which a unique microbial molecule directly engages the system," says Dr. Wu, the study's senior investigator and director of the Lab of Cell Signaling at Weill Cornell.

While the findings have no immediate clinical significance, they might be useful in helping to make vaccines against pathogens more effective. "Based on the structure we have of STING interacting with molecules secreted from bacteria, we may be able to design new molecules that induce a stronger, more persistent immune response," says Dr. Yin.

STING's wings and tail respond to invaders

All plant and animal life use an innate immune response to recognize and respond to an assault by pathogens. This primitive response is immediate, but not long-lasting or protective; the secondary, sets up the long-term defense.

Previously, scientists thought the innate response was generic, but recently, investigators uncovered proteins expressed by cells of the that identify specific molecular patterns linked to microbial pathogens. STING was recently identified as a member of a family of proteins that is involved in this pattern recognition task. It is specifically tasked at finding viruses that have double-stranded DNA genomes, and with locating bacteria.

While STING does not confront viruses or viral molecules directly, with bacteria, STING is on the lookout for small molecules that bacteria use to communicate within their cellular bodies. These molecules are cyclic-di-GMP, produced by most bacteria, and cyclic-di-AMP, used by bacteria that grow inside the cells of a host.

However STING is activated, the end result is the same, Dr. Yin says. STING induces a response from interferon, which activates other immune cells that kill the invading parasites.

The of STING developed by the research team explains the overall structure of the protein. The second structure of STING, bound to cyclic-di-GMP, explains how the protein can recognize and pick up both cyclic-di-GMP and cyclic-di-AMP. This and other published data suggests how STING activates an .

Dr. Yin describes STING's structure as two wings, which form the bottom and sides that hold cyclic-di-GMP. "It is like two people holding out their left or right hands, wrists joining and palms facing each other, and holding something in their palms."

"The amazing thing is STING only binds to cyclic-di-GMP and, to a lesser degree, cyclic-di-AMP, leaving all other nucleotides in the quite safe -- meaning it is not picking up natural human molecules," she says. "To use the hands analogy again, only cyclic-di-GMP and cyclic-di-AMP can fit into the space between the two hands. Other nucleotides are too small and they will slip."

The researchers also propose that once STING's wings picks up cyclic-di-GMP, the molecule frees up the tail of STING's protein? which then engages with other proteins.

"We believe this movement of the tail section of the protein is the switch that turns on the interferon response," says Dr. Yin.

"This work has uncovered a number of unexpected insights into how STING works," says Dr. Wu. "By binding tightly only to tiny molecules produced by bacteria, which then turns on the interferon switch, it prevents the immune system from attacking the body's own cells."

Related Stories

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.