How axons change chemical cues to mechanical force

August 8, 2018, Nara Institute of Science and Technology
A slight concentration gradient (0.4 percent) in netrin-1 (blue) induces a 71 percent difference in shootin1a phosphorylation (green) within growth cones. Credit: Naoyuki Inagaki

While today's technology is growing increasingly wireless, the human brain still depends on neurons being directly connected to one another. Two neurons are connected when one extends its axon to the other. This extension is activated by chemical cues that cause the axon to exert a directional force. While scientists have long known of molecules that can act as cues, the molecules that initiate the force have remained a mystery. In a new study published in eLife, a team of Japanese and American scientists report that the molecule shootin1 is essential for guiding the axon to its final destination.

Naoyuki Inagaki, professor at the Nara Institute of Science and Technology (NAIST) and leader of the study, explains that there are two that have vital roles in axon guidance. "Nectin-1 is a well-characterized axon guidance molecule. Shootin1 is a brain-specific protein involved in axon outgrowth."

Concentration changes in nectin-1 cause an axon to change its direction of growth with such abruptness that under a microscope it almost seems like someone is controlling the axon with a steering wheel. However, just how big an effect shocked even the scientists.

"We found that a slight concentration gradient in netrin-1 of only 0.4 percent induces a 71 percent difference in shootin1a phosphorylation within growth cones," says Dr. Kentarou Baba, who first-authored the study. "That is remarkable sensitivity."

That means even if the difference between the amount of nectin-1 on the two sides of the growth cone was less than 1 percent, more than two-thirds of phosphorylated shootin1 would accumulate on the side with more nectin-1, and thus steer the axon to its proper direction.

Further, the phosphorylation significantly enhanced the binding of shootin1 to L1-CAM, a molecule which Inagaki says "are the wheels of the axon." The axons could still grow if the interaction between shootin1 and L1-CAM was disrupted, albeit at a slower velocity, but not in the direction signaled by the nectin-1 gradient. "The direct interaction between shootin1 and L1-CAM generated the traction force for growth cone motility," says Baba.

The findings suggest that shootin1 is a natural chemo-mechanical transducer, converting chemical information into mechanical output.

"Our findings suggest that the polarized phosphorylation of shootin1 within growth cones is required for the directional axon guidance induced by netrin-1 gradients," says Inagaki.

Explore further: The dynamics of directed axon migration in the brain

More information: Kentarou Baba et al, Gradient-reading and mechano-effector machinery for netrin-1-induced axon guidance, eLife (2018). DOI: 10.7554/eLife.34593

Related Stories

The dynamics of directed axon migration in the brain

February 28, 2018
In a new study, NAIST scientists, in collaboration with researchers at the Osaka National Hospital and University of Tokyo, report that the L1 Cell Adhesion Molecule (L1-CAM) is crucial for directed axon migration. The study ...

'Simple, but powerful' model reveals mechanisms behind neuron development

December 18, 2017
All things must come to an end. This is particularly true for neurons, especially the extensions called axons that transmit electrochemical signals to other nerve cells. Without controlled termination of individual neuron ...

Scientists unravel mystery of brain cell growth

August 8, 2014
In the developing brain, special proteins that act like molecular tugboats push or pull on growing nerve cells, or neurons, helping them navigate to their assigned places amidst the brain's wiring.

Steering the filaments of the developing brain

August 1, 2014
During brain development, nerve fibers grow and extend to form brain circuits. This growth is guided by molecular cues (Fig. 1), but exactly how these cues guide axon extension has been unclear. Takuro Tojima and colleagues ...

Turn left! How myosin-Va helps direct neuron growth

April 28, 2016
Researchers at the RIKEN Brain Science Institute in Japan have discovered a protein complex that helps direct the growth of axons—the parts of neurons that make up our nerves, connecting our senses and muscles to the brain ...

Recommended for you

Wiring diagram of the brain provides a clearer picture of brain scan data

December 14, 2018
Already affecting more than five million Americans older than 65, Alzheimer's disease is on the rise and expected to impact more than 13 million people by 2050. Over the last three decades, researchers have relied on neuroimaging—brain ...

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

Parents' brain activity 'echoes' their infant's brain activity when they play together

December 13, 2018
When infants are playing with objects, their early attempts to pay attention to things are accompanied by bursts of high-frequency activity in their brain. But what happens when parents play together with them? New research, ...

In the developing brain, scientists find roots of neuropsychiatric diseases

December 13, 2018
The most comprehensive genomic analysis of the human brain ever undertaken has revealed new insights into the changes it undergoes through development, how it varies among individuals, and the roots of neuropsychiatric illnesses ...

Researchers find the cause of and cure for brain injury associated with gut condition

December 13, 2018
Using a mouse model of necrotizing enterocolitis (NEC)—a potentially fatal condition that causes a premature infant's gut to suddenly die—researchers at Johns Hopkins say they have uncovered the molecular causes of the ...

Researchers discover abundant source for neuronal cells

December 13, 2018
USC researchers seeking a way to study genetic activity associated with psychiatric disorders have discovered an abundant source of human cells—the nose.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.