Brain response study upends thinking about why practice speeds up motor reaction times

August 16, 2018, Johns Hopkins University School of Medicine
Participants sat in front of a computer monitor and made reaching movements while holding a handle, whose position was recorded on a digitizing tablet. Credit: Cell Reports

Researchers in the Department of Physical Medicine and Rehabilitation at Johns Hopkins Medicine report that a computerized study of 36 healthy adult volunteers asked to repeat the same movement over and over became significantly faster when asked to repeat that movement on demand—a result that occurred not because they anticipated the movement, but because of an as yet unknown mechanism that prepared their brains to replicate the same action.

The findings, the researchers say, add another clue to a growing body of research on how the brain generates movement in the first place, and could eventually help scientists understand how brain-controlled motor responses go awry after neurologic disease or injuries such as strokes.

Since the early 1950s, researchers have known that repeating a movement can improve the reaction time required to generate it later says study author Adrian Mark Haith, Ph.D., assistant professor of neurology at the Johns Hopkins University School of Medicine. This effect has long been attributed to "anticipation"—being prepared to repeat a movement by default in accordance with expectations about which movement would most likely be required.

However, other experiments using transcranial magnetic stimulation—a technique that uses magnetic pulses to stimulate the brain and record responses—show that repeating movements can actually bias the movements that occur when stimulating the brain's motor cortex, making typically random movements more like the one that was practiced.

"These studies suggest that something other than anticipation might be happening with repetition," Haith says.

In a study designed to clarify how repeated movements might influence motor response, Haith, along with colleagues Pablo A. Celnik, M.D., professor of and rehabilitation, neurology, and neuroscience at the Johns Hopkins University School of Medicine; Firas Mawase, Ph.D., a former postdoctoral fellow in Celnik's lab; and Daniel Lopez, B.S., a research assistant at the Johns Hopkins University School of Medicine, devised a set of experiments to tease out whether or not practice might affect movement through anticipation or another mechanism.

The researchers recruited 36 right-handed adult volunteers, 22 of whom were women, ranging in age from 19 to 30 years. Each of the volunteers sat at a desk in front of a large computer screen. On the desktop was a touch-responsive tablet. When a appeared on the screen, the volunteers were asked to move a cursor to touch the target as quickly as possible using a stylus on the tablet.

In initial tests, the volunteers took about 215 milliseconds (each millisecond is 1/1000th of a second) to respond and reach the changing target, no matter what direction they moved their hands. However, after practicing moving the cursor hundreds of times in just a single direction, the volunteers became significantly faster at responding and moving the cursor toward the target in that direction, even though their reaction times stayed the same when the target appeared in other directions.

"The benefit you get is 20 to 30 milliseconds," says Celnik. "It sounds small, but when you're looking at performance that can make a difference in sports and other areas that require quick motor movements, that time increment might mean the divide between a winner and a loser."

The scientists reasoned that there were two possibilities for the subjects' decreased reaction times: One idea is that they had learned to anticipate the movement and were guessing that the target would appear in the preferential (usual) direction from force of habit. Another is that repetitive practice somehow trained their brains to select the practiced movement more quickly in the future while still allowing the subjects the same amount of flexibility as before they practiced to choose other targets.

To tease apart those possibilities, the researchers tried another experiment much like the previous ones in which the subjects were asked to move their hand toward a target that appeared on the screen, but with a twist: they were asked to move their hand on every fourth beat of a metronome, whether the target appeared or not. When the target did appear, it showed up in various time intervals right before the fourth beat, effectively imposing a reaction time on each trial.

If, as previous theories held, the subjects were anticipating movement in the practiced direction, the researchers reasoned they'd preferentially move their hand in that direction when the target failed to show up, or when the reaction time was so narrow that they wouldn't have time to accurately hit the target. However, that wasn't the case, says Firas.

"The subjects did have preferred directions for moving their hands when they had to guess, but it was mostly directions comfortable for right-handed people," he says. "They either chose up and to the right or down and to the left, rather than in the they'd practiced."

Together, the researchers say, these results, published in the July 24, 2018 Cell Reports, suggest that repeating a movement many times somehow primes the brain to be more efficient at making that movement in the future.

Celnik says he and his team plan to investigate what's happening in the brain itself to better understand this effect. Gaining insight on the neural mechanisms behind the phenomenon, he adds, could lead to more effective therapies for stroke and other disorders that affect the brain's control over body .

Explore further: Getting a leg up: Hand task training transfers motor knowledge to feet

More information: Firas Mawase et al. Movement Repetition Facilitates Response Preparation, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.06.097

Related Stories

Getting a leg up: Hand task training transfers motor knowledge to feet

March 30, 2017
The human brain's cerebellum controls the body's ability to tightly and accurately coordinate and time movements as fine as picking up a pin and as muscular as running a foot race. Now, Johns Hopkins researchers have added ...

The brain distinguishes causes of errors to perform adaptation

July 17, 2018
Practice is necessary to improve motor skills. Even if one performs poorly at first, one's athletic performance improves through repeated exercise due to the reduction of motor errors as the brain learns.

The brain is able to anticipate painful movements following injury

May 31, 2018
When people are injured, how does the brain adapt the body's movements to help avoid pain? New research published in The Journal of Physiology investigates this question.

When choosing your next move, your brain is always ready for plan B

February 14, 2017
Whether we're navigating a route to work or browsing produce at the grocery store, our brains are constantly making decisions about movement: Should I cross the street now or at the intersection? Should I reach for the red ...

Brain scientists identify 'cross talk' between neurons that control touch in mice

May 29, 2018
Scientists report they have uncovered a previously overlooked connection between neurons in two distinct areas of the mammalian brain. The neurons, they say, control the sense of touch, and their experiments in mice offer ...

Want to learn a new skill? Faster? Change up your practice sessions

January 28, 2016
When practicing and learning a new skill, making slight changes during repeat practice sessions may help people master the skill faster than practicing the task in precisely the same way, Johns Hopkins researchers report.

Recommended for you

Cell study reveals how head injuries lead to serious brain diseases

November 16, 2018
UCLA biologists have discovered how head injuries adversely affect individual cells and genes that can lead to serious brain disorders. The life scientists provide the first cell "atlas" of the hippocampus—the part of the ...

Newborn babies' brain responses to being touched on the face measured for the first time

November 16, 2018
A newborn baby's brain responds to being touched on the face, according to new research co-led by UCL.

Precision neuroengineering enables reproduction of complex brain-like functions in vitro

November 14, 2018
One of the most important and surprising traits of the brain is its ability to dynamically reconfigure the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the ...

New brain imaging research shows that when we expect something to hurt it does, even if the stimulus isn't so painful

November 14, 2018
Expect a shot to hurt and it probably will, even if the needle poke isn't really so painful. Brace for a second shot and you'll likely flinch again, even though—second time around—you should know better.

A 15-minute scan could help diagnose brain damage in newborns

November 14, 2018
A 15-minute scan could help diagnose brain damage in babies up to two years earlier than current methods.

New clues to the origin and progression of multiple sclerosis

November 13, 2018
Mapping of a certain group of cells, known as oligodendrocytes, in the central nervous system of a mouse model of multiple sclerosis (MS), shows that they might have a significant role in the development of the disease. The ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

BendBob
not rated yet Aug 17, 2018
Musicians call this "muscle memory" and after practicing a new piece of music they can play that music without reading it, or having to "think it through", while playing it on demand.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.