Found: A destructive mechanism that blocks the brain from knowing when to stop eating

August 22, 2018, University of California - San Diego
Mice fed a high-fat diet produce an enzyme named MMP-2 that clips receptors for the hormone leptin from the surface of neuronal cells in the hypothalamus. This blocks leptin from binding to its receptors. This in turn keeps the neurons from signaling that your stomach is full and you should stop eating. Credit: University of California San Diego

An international team of researchers has uncovered a destructive mechanism at the molecular level that causes a well-known phenomenon associated with obesity, called leptin resistance.

They found that mice fed a high-fat diet produce an enzyme named MMP-2 that clips for the from the surface of neuronal cells in the hypothalamus. This blocks from binding to its receptors. This in turn keeps the neurons from signaling that your stomach is full and you should stop eating.

This is the first time that a destructive molecular mechanism has been observed and described.

Scientists showed that when MMP-2 is blocked, leptin can still bind to the receptors and signal satiety. They hope that in the future, clinicians will be able to treat leptin resistance in humans by blocking MMP-2. They also have evidence that their findings have a broader scope.

"We opened a new field of study for metabolic disease," said Rafi Mazor, a research scientist in the Department of Bioengineering at the University of California San Diego and the paper's first author. "We need to ask what other pathways, in addition to leptin and its receptors, undergo a similar destructive process and what the consequences might be."

Mazor is part of a team that includes researchers from the University of California San Diego, the Salk Institute for Biological Studies in La Jolla, Tel Aviv University in Israel and Monash University in Australia. The team presents their findings in the Aug. 23 issue of Science Translational Medicine.

While other research efforts have focused on studying pathways that block leptin from doing its job, Mazor and colleagues, under the lead of UC San Diego bioengineering professor Geert Schmid-Schonbein, decided to investigate the leptin receptor in the brain itself.

"Our hypothesis was that an enzyme breaking down proteins into amino acids and polypeptides can cleave membrane receptors and lead to dysfunctional activity," Mazor said.

He and colleagues are calling for a large-scale clinical trial to investigate whether MMP-2 inhibitors might help people lose weight. Those in the early stages of being overweight might be clipping their leptin receptors, but their neural pathways are still intact, Schmid-Schonbein said. Receptors are able to regenerate but it's unclear to what extent.

"When you block the protease that leads to the receptors not signaling, you can treat the issue," said Schmid-Schonbein.

Leptin molecules are released from white fat tissue during a meal. They travel through the blood stream into the brain, specifically the hypothalamus, where they stimulate neural receptors to signal that the stomach is full. People who are obese often have plenty of leptin in their blood, but it fails to lead to signaling satiety.

Leptin resistance is a known process associated with obesity, but the molecular mechanisms by which it occurs were not understood.

Researchers first tested brain tissue from obese mice for protease activity. This is how they found MMP-2, the enzyme that they suspected was damaging leptin receptors. Mazor and colleagues then developed a method to tag leptin receptors to see what was happening to them. They observed that MMP-2 was damaging the receptors, which lost their ability to signal. Researchers then used a recombinant protein to verify that the MMP-2 enzyme was indeed cleaving leptin receptors. They also cultured brain cells from mice and found clipped receptors when MMP-2 was present.

Researchers genetically altered a group of mice to not produce MMP-2. In spite of being fed a high-fat diet, these mice gained less weight and their leptin receptors remained intact. Meanwhile, mice that were fed the same diet but were not genetically altered became obese and their leptin receptors were cleaved.

In the long run, researchers aim to design an MMP-2 inhibitor or an inhibitor for the MMP-2 pathway of activation. Next steps also include confirming that the same mechanism occurs in human brain cells. "In the future, we will try to find out why proteases are activated, what is activating them and how to stop it," Mazor added. He and the team think that other membrane receptors may also be destroyed in the same way. "There is still a lot of work to do to better understand receptor cleaving and the loss of cell function while on a high-fat diet."

Explore further: Obese inducing brain mechanism

More information: R. Mazor el al., "Cleavage of the leptin receptor by matrix metalloproteinase–2 promotes leptin resistance and obesity in mice," Science Translational Medicine (2018). stm.sciencemag.org/lookup/doi/ … scitranslmed.aah6324

Related Stories

Obese inducing brain mechanism

September 15, 2017
Leptin is an adipocyte-derived hormone that stimulates hypothalamic neurons to strongly inhibit food intake. Leptin signaling in the hypothalamus, a part of the mid-brain, thus plays a crucial role in the regulation of body ...

Leptin's neural circuit identified—Genome-editing study reveals how hormone helps prevent both obesity and diabetes

April 18, 2018
Revealing surprising answers to a long-standing enigma about the brain target of the anti-obesity hormone leptin, neuroscientists at Tufts University School of Medicine have used CRISPR genome editing to identify a neural ...

Voluntary exercise by animals prevents weight gain, despite high-fat diet

May 18, 2011
(Medical Xpress) -- University of Cincinnati (UC) researchers have found that animals on a high-fat diet can avoid weight gain if they exercise.

Obesity research finds leptin hormone isn't the overeating culprit

May 15, 2015
For years, scientists have pointed to leptin resistance as a possible cause of obesity. Research led by investigators at the University of Cincinnati (UC) Metabolic Diseases Institute, however, found that leptin action isn't ...

Leptin also influences brain cells that control appetite, study finds

June 1, 2014
Twenty years after the hormone leptin was found to regulate metabolism, appetite, and weight through brain cells called neurons, Yale School of Medicine researchers have found that the hormone also acts on other types of ...

'Satiety hormone' leptin links obesity to high blood pressure

December 4, 2014
Leptin, a hormone that regulates the amount of fat stored in the body, also drives the increase in blood pressure that occurs with weight gain, according to researchers from Monash University and the University of Cambridge.

Recommended for you

Functional engineered oesophagus could pave way for clinical trials 

October 18, 2018
The world's first functional oesophagus engineered from stem cells has been grown and successfully transplanted into mice, as part of a pioneering new study led by UCL.

New findings cast light on lymphatic system, key player in human health

October 16, 2018
Scientists at the Oklahoma Medical Research Foundation have broken new ground in understanding how the lymphatic system works, potentially opening the door for future therapies.

New model suggests cuffless, non-invasive blood pressure monitoring possible using pulse waves

October 16, 2018
A large team of researchers from several institutions in China and the U.S. has developed a model that suggests it should be possible to create a cuffless, non-invasive blood pressure monitor based on measuring pulse waves. ...

Age-related increase in estrogen may cause common men's hernia

October 16, 2018
An age-related increase in estrogen may be the culprit behind inguinal hernias, a condition common among elderly men that often requires corrective surgery, according to a Northwestern Medicine study was published Oct. 15 ...

Income and wealth affect the mental health of Australians, study shows

October 16, 2018
Australians who have higher incomes and greater wealth are more likely to experience better mental health throughout their lives, new research led by the Bankwest Curtin Economics Centre has found.

Discovery of inner ear function may improve diagnosis of hearing impairment

October 15, 2018
Results from a research study published in Nature Communications show how the inner ear processes speech, something that has until now been unknown. The authors of the report include researchers from Linköping University, ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

JamesG
5 / 5 (1) Aug 22, 2018
They research and they research and we never see it at the pharmacy. Sometimes I think these people just research for the money. There is no urgency.
tekram
not rated yet Aug 22, 2018
An analog of human leptin metreleptin (trade name Myalept) was first approved in Japan in 2013, and in the United States in February 2014. Metreleptin treatment was associated with a significant decrease in blood glucose (A1c decreased from 9.4% at baseline to 7.0% at study end) and triglyceride concentration (from 500 mg/dl at baseline to 200 mg/dl at study end).
MR166
not rated yet Aug 23, 2018
The study fails to address the difference between beneficial carbs and high glycemic carbs in one's diet. Carbs high in sugars and starches are far worse than fats. They lead to weight gain and diabetes.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.