Treating inflammatory bowel disorder by delivering microRNAs

August 28, 2018, Osaka University
Fig. 1. The role of miRNAs in IBD. miR-29 loaded on a supercarbonate apatite prevents the development of inflammation by suppressing the production of inflammatory cytokines (IL-6, TGF-β, and IL-23) secreted from dendritic cells and by suppressing the differentiation of naive T cells to Th17 cells. Credit: Osaka University

Inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis, are chronic inflammatory diseases of unknown cause, and the number of IBD patients is on the rise.

Various inflammatory cytokines, including TNF-α and interleukin-6 (IL6), damage the intestinal wall, causing IBD. Thus, the signaling pathway has become a therapeutic target.

Several types of microRNAs (miRNAs) to suppress the production of inflammatory cytokines have been clarified; however, there were no methods for efficiently and stably delivering miRNAs to the affected area. miRNAs can be unstable in the blood, reducing their transfection efficiency to the target cells, so the use of miRNAs for treating IBD has rarely been attempted.

Osaka University researchers efficiently delivered miRNAs to cells in inflamed intestinal tracts using a super carbonate apatite (sCA), which had been shown to be highly effective in the delivery of nucleic acids to solid tumors, demonstrating the efficacy of sCA in the prevention and treatment of colitis in mice. Their research results were published in Molecular Therapy-Nucleic Acids.

The researchers performed systemic administration of RNA (miR)-29a and miR-29b (both of which suppress inflammatory cytokines) loaded on sCA to IBD model mice. Although miRNAs didn't accumulate much in the inflamed intestinal tracts, inflammatory cytokines were reduced, exhibiting the effects of prevention and treatment of colitis.

Fig.2. Efficient targeting of DCs by sCA-miR. Upper panel, sCA-miR (tagged with red fluorescence) is predominantly incorporated into CD11c+ DCs (green color). Lower panel, Histological image of distal colon treated with DSS+ negative control-miR (left) and DSS+ miR-29b on sCA (right). Credit: Osaka University

In addition, it was found that miRNAs loaded on sCA were efficiently delivered to the inflamed intestinal tracts' dendritic cells (DCs), which play a central role in immune responses, suppressing the production of .

This study clarified that the sCA functioned as a unique system for delivering nucleic acid-based medicines such as miRNAs to DCs in the affected area to suppress inflammatory reaction at the molecular level, exhibiting the effects of prevention and treatment of colitis.

Corresponding author Hirofumi Yamamoto says, "Our technique to deliver miRNAs to DCs, major players in immune responses, will shape the future of medical care. sCA can be used to treat a wide range of immunity and allergic disorders caused by immune responses. The results of our study will lead to the development of new drugs for treating these disorders."

Explore further: Cytokine controls immune cells that trigger inflammatory bowel disease, study finds

More information: Tadafumi Fukata et al. The Supercarbonate Apatite-MicroRNA Complex Inhibits Dextran Sodium Sulfate-Induced Colitis, Molecular Therapy - Nucleic Acids (2018). DOI: 10.1016/j.omtn.2018.07.007

Related Stories

Cytokine controls immune cells that trigger inflammatory bowel disease, study finds

April 18, 2017
A certain cytokine, or small protein that helps cells communicate during immune responses, can control whether immune cells promote or suppress inflammatory bowel disease, a finding that could lead to new treatments, according ...

Igniting the rheumatoid arthritis flame through a cellular cascade

May 30, 2018
Chronic inflammatory disorders, including autoimmune diseases such as rheumatoid arthritis, involve the action of various inflammatory molecules (cytokines) produced by cells of the immune system. One such cytokine, IL-17, ...

Body knows best: A natural healing mechanism for inflammatory bowel disease

May 30, 2018
Treating inflammatory diseases of the bowel is extremely challenging: Genes, gut microbes and disrupted immune function all contribute. Weizmann Institute of Science researchers are proposing a way around this complexity. ...

New cytokine network can repair tissue damage in the intestine, study finds

May 16, 2018
A new group of proteins called cytokines, critical for antimicrobial activity and repairing the damaged intestinal tissue found in inflammatory bowel disease (IBD), has been discovered by researchers in a study led by Georgia ...

Aqueous humor, microRNAs and glaucoma

April 11, 2018
Glaucoma—the leading cause of vision loss worldwide—includes a heterogeneous group of disorders. Primary open-angle glaucoma (POAG) and exfoliation glaucoma (XFG) are linked to decreased outflow of aqueous humor, which ...

Potential RNA markers of abnormal heart rhythms identified in circulating blood

March 19, 2018
Atrial fibrillation (AF) is a heart condition that causes an irregular and often rapid heart rate. It increases the risk of developing strokes, heart failure, and even dementia. Although associated with aging, high blood ...

Recommended for you

New immunotherapy improves MS symptoms

November 20, 2018
A world-first clinical trial of a new cellular immunotherapy for multiple sclerosis (MS) has improved symptoms and quality of life for the majority of patients.

Regulating the immune system's 'regulator'

November 20, 2018
A research team at the Academy of Immunology and Microbiology, within the Institute for Basic Science (IBS) has discovered a possible therapeutic target that pulls the reins of immunity. In Nature Communications, the scientists ...

To resolve inflammation, location matters

November 19, 2018
Health conditions that involve inflammation run the gamut, from multiple sclerosis and lupus to arthritis, diabetes, and cancer. While inflammation can serve as a normal response to help the body deal with injury or infection, ...

New insights into how an ordinary stem cell becomes a powerful immune agent

November 19, 2018
How do individual developing cells choose and commit to their "identity"—to become, for example, an immune cell, or a muscle cell, or a neuron?

A gut bacterium as a fountain of youth? Well, let's start with reversing insulin resistance

November 16, 2018
Move over Bifidobacterium and Lactobacillus. There's a new health-promoting gut bacterium in town, and it's called Akkermansia muciniphila.

New inflammation inhibitor discovered

November 16, 2018
A multidisciplinary team of researchers led from Karolinska Institutet in Sweden have developed an anti-inflammatory drug molecule with a new mechanism of action. By inhibiting a certain protein, the researchers were able ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.