First language study using new generation of wearable brain scanner

August 8, 2018 by Jane Icke, University of Nottingham
First language study using new generation of wearable brain scanner
Credit: University of Nottingham

Scientists have carried out the first study of human cognition using a new generation of brain scanner that can be worn like a helmet. This marks an important step forward in the translation of their new technique from the laboratory bench to a genuinely useful tool for cognitive neuroscience and clinical application.

The study, published in Neuroimage has been undertaken by researchers at the Sir Peter Mansfield Imaging Centre, University of Nottingham and the Wellcome Centre for Human Neuroimaging, UCL. It is part of a five-year Wellcome funded project which has the potential to revolutionise the world of human brain imaging.

Mapping brain function

Using the new wearable (MEG) system the research team were able to map the parts of the brain responsible for language.

Brain cells operate and communicate by producing electrical currents. These currents generate tiny magnetic fields that are detected outside the head. Researchers use MEG to map brain function by measuring these magnetic fields. This allows for a millisecond-by-millisecond picture of which parts of the brain are engaged when we undertake different tasks, such as speaking or moving.

Here, subjects wearing the MEG scanner were shown nouns on a on a screen and told to think of related words without speaking e.g. if presented with the word 'cake' subjects may think of words such as 'bake' or 'eat'. They were instructed to continue doing this until the word disappeared from the screen after a 3 second period.

Each verb generation period was followed by a baseline period of approximately 2 s where the subject was asked to do nothing. Images captured exactly how the language network was engaged when subjects undertake the task.

New clinical tool

Dr. Matt Brookes, who leads MEG work in the School of Physics and Astronomy at the University of Nottingham, said: "This is the first study of using this new and it highlights this technology's potential as a tool for . The study also shows the potential of our system to improve the accuracy of surgical planning, via mapping eloquent cortex.

"If we can map, for example, the , then that will provide useful information for surgeons who may planning resections in, for example, epilepsy. We hope the methods will be particularly beneficial for young children, who are often difficult to scan accurately using the fixed scanners which rely on the patient saying very still for long periods of time. This therefore represents an exciting step forward as it demonstrates the utility of a new generation of wearable MEG sensors for both cognitive and clinical neuroscience."

Conventional MEG scanners are large and weigh around half a ton. This is because the sensors used to measure the brain's magnetic field need to be kept very cold (-269°C) which requires bulky cooling technology. With current scanners, the patient must remain very still whilst being scanned, as even a 5-mm movement can make the images unusable. This means it is often difficult to scan people who find it hard to remain still such as young children, or patients with movement disorders.

The new OPM- MEG system uses 'quantum' sensors that can be mounted in a 3-D-printed prototype helmet. As the new sensors are very light in weight and can work at room temperature, they can be placed directly onto the scalp surface. Positioning the sensors much closer to the brain increases the amount of signal that they can pick up.

Professor Gareth Barnes, from the UCL Wellcome Centre for Human Neuroimaging, said: "From a neuroscience perspective this work is very exciting as it allows us to study tasks that we could never have contemplated before with conventional scanners (where the head has to remain fixed).

"For example, people interacting naturally or people navigating through virtual worlds and laying down memories. Importantly, we can do this throughout the lifespan- allowing us to understand how key functions like memory or language develop and how they degrade in dementia. We soon expect delivery of even smaller sensors which we should be able to put within a bicycle helmet and we are building a new room where subjects are free to move around naturally. We will be able allow people to interact with one another or within virtual worlds where we can study how they make decisions and lay down memories. This will also mean we will be able to study natural human movement and how it is compromised in diseases like Parkinson's.

Explore further: New wearable brain scanner allows patients to move freely for the first time

More information: Tim M. Tierney et al. Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function, NeuroImage (2018). DOI: 10.1016/j.neuroimage.2018.07.035

Related Stories

New wearable brain scanner allows patients to move freely for the first time

March 21, 2018
A new generation of brain scanner, that can be worn like a helmet allowing patients to move naturally whilst being scanned, has been developed by researchers at the Sir Peter Mansfield Imaging Centre, University of Nottingham ...

Scientists discover how brain signals travel to drive language performance

June 21, 2018
Effective verbal communication depends on one's ability to retrieve and select the appropriate words to convey an intended meaning. For many, this process is instinctive, but for someone who has suffered a stroke or another ...

Scientists can now 'see' how different parts of our brain communicate

September 21, 2011
A new technique which lets scientists 'see' our brain waves at work could revolutionise our understanding of the human body’s most complex organ and help transform the lives of people suffering from schizophrenia and ...

Why the world looks stable while we move

March 12, 2018
Head movements change the environmental image received by the eyes. People still perceive the world as stable, because the brain corrects for any changes in visual information caused by head movements. For the first time, ...

Recommended for you

Brain response study upends thinking about why practice speeds up motor reaction times

August 16, 2018
Researchers in the Department of Physical Medicine and Rehabilitation at Johns Hopkins Medicine report that a computerized study of 36 healthy adult volunteers asked to repeat the same movement over and over became significantly ...

Newly identified role for inhibition in cerebellar plasticity and behavior

August 16, 2018
Almost everyone is familiar with the unique mixture of surprise and confusion that occurs after making a mistake during an everyday movement. It's a fairly startling experience—stumbling on a step or accidentally missing ...

Men and women show surprising differences in seeing motion

August 16, 2018
Researchers reporting in the journal Current Biology on August 16 have found an unexpected difference between men and women. On average, their studies show, men pick up on visual motion significantly faster than women do.

How people use, and lose, preexisting biases to make decisions

August 16, 2018
From love and politics to health and finances, humans can sometimes make decisions that appear irrational, or dictated by an existing bias or belief. But a new study from Columbia University neuroscientists uncovers a surprisingly ...

Working memory might be more flexible than previously thought

August 16, 2018
Breaking with the long-held idea that working memory has fixed limits, a new study by researchers at Uppsala University and New York University suggests that these limits adapt themselves to the task that one is performing. ...

Protein droplets keep neurons at the ready and immune system in balance

August 15, 2018
Inside cells, where DNA is packed tightly in the nucleus and rigid proteins keep intricate transport systems on track, some molecules have a simpler way of establishing order. They can self-organize, find one another in crowded ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.