Finally, a potential new approach against KRAS-driven lung cancer

August 9, 2018, CU Anschutz Medical Campus
Alison Bauer, PhD, and colleagues identify MUC5AC as a new target in KRAS-driven lung cancer. Credit: University of Colorado Cancer Center

The previous decade has seen dramatic advances in the treatment of non-small cell lung cancer, as genes driving subtypes of the disease including EGFR, ALK, ROS1 and BRAF are paired with drugs that silence their action. However, a major genetic driver of non-small cell lung cancer is still without a targeted treatment. The gene KRAS is known to be amplified in about 25 percent of non-small cell lung cancers (NSCLC) and despite over 10,000 studies related to KRAS listed in the PubMed database and just shy of 500 clinical trials including the search term KRAS at ClinicalTrials.gov, no successful drugs targeting KRAS are in clinical use.

Now a study by researchers at University of Colorado Cancer Center, M.D. Anderson Cancer Center and partner institutions describes a possible new approach against KRAS. The group shows that these KRAS-driven adenocarcinomas, the most prevalent subtype of NSCLC, are also marked by high levels of "gel-forming mucins," as seen in some forms of asthma, chronic obstructive pulmonary disease and cystic fibrosis. The study, published August 9 in the journal JCI Insight, also pinpoints a cause of increased mucin production, namely the gene MUC5AC.

Using independent cohorts of lung tissue samples, the group found that MUC5AC tended to be over-expressed specifically in KRAS-mutated non-small cell lung cancers, and that high expression levels of the Muc5ac mRNA predicted poor patient outcomes. When the group developed mouse models lacking Muc5ac, mice that couldn't produce Muc5ac fared better than mice with Muc5ac.

"What's unique about this study is that we were able to use two human cohorts and two animal models. With a lack of the Muc5ac gene in animal models, we saw a decrease in tumor development. In human cohorts, high expression of MUC5AC mRNA was associated with higher mortality. And when we evaluated those patients with KRAS mutations, we showed KRAS-mutant patients with high MUC5AC mRNA expression had higher mortality. This supports that MUC5AC is associated with KRAS," says Alison Bauer, Ph.D., CU Cancer Center investigator and associate professor in the Department of Environmental and Occupational Health at the Colorado School of Public Health.

"Our collaboration with M.D. Anderson was a great example of team science," says Christopher Evans, Ph.D., professor in the CU School of Medicine Division of Pulmonary Sciences and Critical Care. "Frankly, we don't understand exactly what MUC5AC is doing in lung cancer, and the fact that we were able to replicate our results in two populations and at two places is a big deal."

MUC5AC is one in a family of genes that produce proteins essential in forming mucus-like gels that line the respiratory tract, digestive tract and other systems. Typically, mucins protect the tissues they coat. But over-production of these gels in COPD, asthma and cystic fibrosis is associated with obstruction and infection.

"As an aside, these genes always pop up in adenocarcinomas, so much so that the existence of mucins helps to diagnose the condition," says Evans, whose lab specializes in the study of mucins. "But no one knows what they do in these cancers. It's not a barrier function and it doesn't look like mucins are trapping bacteria or anything like that."

According to Evans, it may be that because mucin proteins are so large ("100 to 1,000 times bigger than other proteins in the cell," he says), manufacturing these proteins may simply add additional stress to cells that are already feeling the stress brought on by changes in KRAS that initiate the cancer.

"What we've done here is identify that whatever role MUC5AC has in KRAS-mutant non-small cell lung cancer, it's a bad one," Evans says.

KRAS itself has proved difficult to drug, in part because KRAS is needed for the development of healthy cells and so uniformly muting its action would cause significant side-effects. But MUC5AC may be less necessary for healthy cells. And because MUC5AC has been identified as a target outside the field of cancer, drug development efforts are already underway.

"Researchers are targeting MUC5AC transcription factors and working to interfere with the body's ability to synthesize the Muc5ac protein itself. Also, people naturally express different levels of mucins—up to 40-fold difference—and so there is research aimed at understanding how the body regulates this production," Bauer says.

Now with a target in sight, the group hopes this work will invigorate efforts to combat mucins in general and MUC5AC in particular as a strategy against KRAS-mutant .

Explore further: Looking beyond mutations, researchers take a new approach to an old oncogene

Related Stories

Looking beyond mutations, researchers take a new approach to an old oncogene

May 30, 2018
KRAS is one of the most commonly mutated and widely studied genes in cancer; a quick PubMed search for KRAS and cancer turns up more than 9,000 entries. The vast majority of studies examining the gene's cancerous role focus ...

Researchers develop new strategy to target KRAS mutant cancer

September 14, 2017
Although KRAS is one of the major oncogenes associated with aggressive cancers, drugs designed to block KRAS function have not been able to halt cancer progression in a clinical setting. Until now, KRAS has remained infamously ...

Cystic fibrosis alters the structure of mucus in airways

June 28, 2017
Mucus is important for maintaining healthy lungs. Inhaled particles, including bacteria and viruses, get trapped in mucus and then cilia—tiny hair like projections on the surface of the airway cells—sweep the mucus out ...

Antifolates show promise against NSCLC subtype

November 14, 2011
Patients with non-small cell lung cancer who have mutations in the KRAS gene should respond well to the antifolate class of drugs, according to results of a recent study conducted by Quintiles comparing human lung cancer ...

Existing treatment could be used for common 'untreatable' form of lung cancer

June 21, 2018
A cancer treatment already approved for use in certain types of cancer has been found to block cell growth in a common form of lung cancer for which there is currently no specific treatment available.

Three hits to fight lung cancer

January 1, 2016
Although the most common type of lung cancer - non-small cell lung cancer (NSCLC) - has recently seen major treatment advances in some genetic subtypes, other subtypes continue to evade effective treatment. (New therapies ...

Recommended for you

Study involving hundreds of patient samples may reveal new treatment options of leukemia

October 17, 2018
After more than five years and 672 patient samples, an OHSU research team has published the largest cancer dataset of its kind for a form of leukemia. The study, "Functional Genomic Landscape of Acute Myeloid Leukemia", published ...

A 150-year-old drug might improve radiation therapy for cancer

October 17, 2018
A drug first identified 150 years ago and used as a smooth-muscle relaxant might make tumors more sensitive to radiation therapy, according to a recent study led by researchers at The Ohio State University Comprehensive Cancer ...

Loss of protein p53 helps cancer cells multiply in 'unfavourable' conditions

October 17, 2018
Researchers have discovered a novel consequence of loss of the tumour protein p53 that promotes cancer development, according to new findings in eLife.

Researcher fighting breast cancer with light therapy

October 17, 2018
When treatment is working for a patient who is fighting cancer, the light at the end of the tunnel is easier to see.

New method uses just a drop of blood to monitor lung cancer treatment

October 17, 2018
Dr. Tasuku Honjo won the 2018 Nobel Prize in physiology or medicine for discovering the immune T-cell protein PD-1. This discovery led to a set of anti-cancer medications called checkpoint inhibitors, one of the first of ...

Gene screening technique helps identify genes involved in a fatty liver-associated liver cancer

October 17, 2018
With an estimated twenty-thousand protein-coding genes in the human genome, pinpointing a specific gene or pathway responsible for a particular disease can be like finding a needle in the proverbial haystack. This has certainly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.