Same mutations underpin spread of cancer in individuals, study finds

September 6, 2018, Stanford University Medical Center
Credit: CC0 Public Domain

Scientists have arrived at a key understanding about how cancers in individual patients spread, or metastasize, a study from the Stanford University School of Medicine and other collaborating institutions reports.

The study found that that drive cancer growth are common among metastases in a single patient.

Most cancer-related deaths are caused by metastases, or secondary tumors in distant locations of the body that have spread away from the original, primary tumor. While primary tumors can often be surgically removed, metastatic tumors typically require treatment such as standard chemotherapy or targeted therapy. The success of such new targeted therapies depends on the presence of a specific mutation in all cancer cells, in particular in metastatic tumors.

Until now, most studies that aimed to decode the genetic variability, or heterogeneity, of cancers focused mainly on primary tumors. And while that information is still extremely valuable, it leaves much of the story untold; cancer cells are notorious for their ability to change, evolve and evade treatments, particularly as they spread in the body.

"We took samples from multiple untreated metastases of each patient, and we observed a mix of overlapping and differing driver mutations," said Johannes Reiter, Ph.D., an instructor of radiology at Stanford. "But through computational analyses, we inferred that the driver mutations that were most likely to contribute to were shared among all metastases in each patient."

A tumor comprised of billions of cells is riddled with ; cancer cells and normal cells acquire multiple mutations as they divide. Identifying the driver mutations that significantly contribute to cancer development is critical to precision oncology, in which doctors aim to treat a patient's cancer based on its genetic composition.

"Doctors might take a sample of the primary tumor and find some mutation—call it mutation X—in a driver gene and then treat it with a drug that targets that driver gene to specifically kill all cells that have mutation X," Reiter said. "But what if that particular mutation is only present in some of the metastases of the patient?" Only the metastases comprised of cells with mutation X would respond to treatment and shrink or go extinct; those without mutation X would continue to grow. In the end, the doctor wouldn't see a remission of the patient's cancer if driver mutations were different across its metastases. "So that's why it's very important for us to know whether or not the driver gene mutations are the same across all metastases of the patient," Reiter said.

The paper will be published Sept. 7 in Science. Reiter; postdoctoral scholar Alvin Makohon-Moore, Ph.D., at Memorial Sloan Kettering Cancer Center; and graduate student Jeffrey Gerold, at Harvard University, share lead authorship. Martin Nowak, Ph.D., professor of biology and of mathematics at Harvard University, is the senior author.

Dr. Bert Vogelstein, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, discusses results from his analysis of tumor mutation variability, which ultimately suggests that a single tumor biopsy may capture much of the essential information required to inform optimal treatment strategies for those with widespread metastatic cancer. Credit: Johns Hopkins Kimmel Cancer Center
Will the real driver mutations please stand up?

Driver mutations occur in known to be involved in tumor genesis—such as genes that typically control cell division. When mutated, these genes may spur a cell to divide in an uncontrolled fashion, generating cancer. While hundreds of driver genes have been identified across cancer types over the last decades, relatively few mutations are thought to be important in the development of an individual's cancers. Likewise, it's hard to know which ones are truly culpable and which are "passenger mutations," or innocuous mutations that occur by happenstance and are just along for the ride ? even if they occurred in a driver gene.

To see whether driver gene mutations were the same across all metastases of a patient's cancer, Reiter and his colleagues analyzed DNA samples from 76 untreated metastases from a group of 20 with eight different cancer types, making sure at least two distinct metastases were sampled in each person.

Like choosing the right suspects in a lineup, the scientists picked out the mutations that occurred in known driver genes and investigated whether or not they were found in all the sampled metastases of an individual patient. In some cancers, the researchers only identified two driver gene mutations; in others, there were as many as 18.

By analyzing their data against massive databases that hold mutational data of more than 25,000 previously sequenced cancers, they found that the driver gene mutations that were shared among all metastases in an individual were also frequently mutated in previously sequenced cancers, indicating that these mutations are the true drivers of the disease and play a critical role during cancer development.

The scientists also saw that the few driver gene mutations that were not found across all metastases of a patient's cancer were predicted to have weak or no functional consequences. In other words, the mutations not shared among all metastases were likely passenger mutations, despite their occurrence in driver genes, and likely did not play a critical role during cancer development. This finding could open new avenues to understanding and interpreting tumor biopsies in the future, Reiter said.

Confirming common driver mutations

Reiter said that, for now, it's too early to generalize these findings due to the small cohort size. But the study does suggest that samples from a single metastasis typically represent the full set of functional driver mutations of a patient's cancer. Next, Reiter hopes to expand the study to more patients with different cancer types. "It's rare that we can access untreated , and that's fortunate for the patients, but we do want to look at the concept of our findings in a larger cohort," Reiter said. Studies of treated samples cannot provide the same mechanistic insights of evolution, he said, because the observed mutations could be the result of the treatment and may not have been observed with a different or no treatment. "We want to see if the idea of common functional drivers holds up when dealing with 20 to 30 and hundreds of untreated samples," he said.

Explore further: Research discovers how some cancers resist treatment

More information: J.G. Reiter at Stanford University School of Medicine in Palo Alto, CA el al., "Minimal functional driver gene heterogeneity among untreated metastases," Science (2018). science.sciencemag.org/cgi/doi … 1126/science.aat7171

Related Stories

Research discovers how some cancers resist treatment

March 23, 2018
An international team of researchers led by Lucio Miele, MD, PhD, Professor and Chair of Genetics at LSU Health New Orleans School of Medicine, and Justin Stebbing, BM BCh MA, PhD, Professor of Cancer Medicine and Medical ...

Study sheds light on role of mutations in metastasized cancer

July 6, 2016
Approximately 95 percent of cancer mortality is caused by metastasis. This fact is what motivates many cancer researchers to focus on finding new ways to stop or kill the growth of metastatic cancer cells. A new paper published ...

Study examines evolution of cancer

February 8, 2016
A novel Yale study answers age-old questions about how cancers spread by applying tools from evolutionary biology. The new insights will help scientists better understand the genetic origins of tumor metastases, and lead ...

Even DNA that doesn't encode genes can drive cancer

April 2, 2018
Most of the human genome—98 percent—is made up of DNA but doesn't actually encode genes, the recipes cells use to build proteins. The vast majority of genetic mutations associated with cancer occur in these non-coding ...

New association found between gene mutations and cancer metastasis

January 27, 2017
Researchers at Uppsala University have identified gene mutations that are associated with the spread of metastases in colorectal cancer. The findings that have recently been published in the journal Cancer Research could ...

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Recommended for you

Obesity both feeds tumors and helps immunotherapy kill cancer

November 12, 2018
A groundbreaking new study by UC Davis researchers has uncovered why obesity both fuels cancer growth and allows blockbuster new immunotherapies to work better against those same tumors.

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

Spread of deadly eye cancer halted in cells and animals

November 12, 2018
By comparing genetic sequences in the eye tumors of children whose cancers spread with tumors that didn't spread, Johns Hopkins Medicine researchers report new evidence that a domino effect in cells is responsible for the ...

Scientists shine new light on link between obesity and cancer

November 12, 2018
Scientists have made a major discovery that shines a new, explanatory light on the link between obesity and cancer. Their research confirms why the body's immune surveillance systems—led by cancer-fighting Natural Killer ...

Two-pronged device enables maverick immune cells to identify and kill cancers

November 12, 2018
Immune cells called Gamma Delta T cells can act independently to identify and kill cancer cells, defying the conventional view of the immune system, reveals new research from the Francis Crick Institute and King's College ...

Research brings personalized medicine to treat leukemia one step closer

November 12, 2018
Scientists at the University of Birmingham have revealed the roles that different types of gene mutations play in causing blood cancers in a study that was the culmination of a decade's research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.