How two 1990s discoveries have led to (some) cured cancers, and a Nobel Prize

October 2, 2018 by Craig Gedye, The Conversation
Credit: CC0 Public Domain

This year's award of the Nobel Prize for Physiology and Medicine to James P. Allison and Tasuku Honjo, for their work in the early 1990s on immune checkpoint proteins CTLA4 and PD1, is a fitting recognition of how their work has led to a seismic shift in the way we treat cancer.

In a remarkably short time, drugs that inhibit these immune checkpoints (or immune brakes) have transformed the practice of clinical oncology. Drugs like pembrolizumab (Keytruda), ipilimumab (Yervoy), nivolumab (Opdivo), avelumab, durvalumab (Imfinzi) and atezolizumab – some of which are now being subsidised on Australia's Pharmaceutical Benefits Scheme (PBS) – are being applied across a range of cancers.

From AFL player Jarryd Roughead to businessman Ron Walker, to former US president Jimmy Carter, anecdotes abound for the activity of immune checkpoint inhibitors in advanced cancers such as melanoma, lung, kidney and bladder and others.

One of the first patients I was privileged to care for in clinic had completed four rounds of treatment with an experimental drug – three months of infusions of a checkpoint inhibitor (one of which is now on the PBS). She had managed these infusions well, but past treatments had failed, so she was understandably anxious.

Before going to see her, I checked her scan report.

Then I looked at the scans.

I checked the report again.

My first words when I walked into her room were ones I never dreamed I'd say to someone with advanced cancer: "I can't see the cancer on your scans anymore". My entrance would have been a lot more dramatic if the nurse hadn't already told her the good news.

"When can I book a holiday?" she said.

How checkpoint inhibitors work

Originally, Allison and Honjo's studies were focused on the underlying machinery of how the immune controls itself. Like many mechanisms in our body, the immune system has the ability to sense prevailing conditions and rapidly amplify a response to defend the body.

This powerful process has evolved over millions of years. But a powerful system also needs powerful regulation, for which our bodies have evolved so-called "checkpoints", or brakes, that guard against overactivity of the .

There are myriad immune checkpoint proteins on the surface of immune cells and normal cells of the body to allow this regulation to occur. Immune checkpoints work in a committee to vote their approval or disapproval of whether an immune cell becomes activated and attacks when it meets and recognises another cell or organism.

Insufficient or impaired signalling allows an overreaction, which may contribute to the causes of autoimmune diseases such as colitis and arthritis. Conversely overactivity of immune checkpoints can obscure and confuse the immune system, allowing infected or abnormal cells to persist.

Cancer cells use these immune checkpoints to hide and evade from , tipping the balance in favour of the cancer and turning each immune cell off. Checkpoint inhibitor drugs work by not allowing the brakes to come on, so the immune system can keep attacking the cancer.

Allison and Tashuka initially conceived that their discoveries may help treat chronic infections such as hepatitis B and C. The drugs created from their discoveries remain in trials for these conditions, but their most exciting application has come through the treatment of cancer.

Using the power of the immune system to fight off cancer actually goes back to the late 19th century. Surgeon William Coley had developed an approach to treating cancer that involved injecting patients with a mixture of heat-killed bacteria in the hopes of stimulating the body's "resisting powers."

But with rapid understanding of the physics of radiotherapy, and the chemistry of chemotherapy, the use of for cancer languished. It waited until we had a better understanding of the biology of the immune system.

We now know that the current crop of drugs will help a minority of patients across many cancers, but still fail the majority. Our understanding still feels very basic. We can't yet predict who will be helped, who will be failed, who will suffer side-effects, or who will benefit from different combinations of therapy.

But this platform of studies and drugs will provide us with the foundation to understand how the immune system is structured and could be reactivated in every person with cancer, to try to solve this puzzle in real-time for each individual.

The work of Allison and Honjo has given us hope of delivering mundane miracles to everyone with cancer, and turning patients back into people.

Explore further: Nobel-winning therapy weaponises immune system against cancer

Related Stories

Nobel-winning therapy weaponises immune system against cancer

October 1, 2018
A revolutionary cancer treatment pioneered by the winners of the 2018 Nobel Prize for Medicine has been hailed as the future of fighting the disease—and it has fewer devastating side effects than chemotherapy.

Often-overlooked natural killer cells may be key to cancer immunotherapy

September 10, 2018
Immune checkpoint inhibitors are revolutionizing the treatment of cancer, but new research challenges the central dogma of how these drugs work. This research, published in the prestigious Journal of Clinical Investigation, ...

New treatment approved for common skin cancer

October 1, 2018
(HealthDay)—Libtayo (cemiplimab-rwlc) injection has been approved by the U.S. Food and Drug Administration to treat advanced squamous cell carcinoma (CSCC), the agency said in a news release.

US, Japan duo win Nobel Medicine Prize for cancer therapy

October 1, 2018
Two immunologists, James Allison of the US and Tasuku Honjo of Japan, won the 2018 Nobel Medicine Prize for research into how the body's natural defences can fight cancer, the jury said on Monday.

Enhancing immune checkpoint inhibitor therapy using treatment combination

September 5, 2018
A combination of a novel inhibitor of the protein CK2 (Casein kinase 2) and an immune checkpoint inhibitor has dramatically greater antitumor activity than either inhibitor alone, according to research from The Wistar Institute ...

Dilemma for cancer patients as life-saving meds are tied to vision loss

May 18, 2018
(HealthDay)—A newer type of cancer treatment may offer the chance of longer survival, but the drugs could also trigger new side effects, such as vision problems.

Recommended for you

Immunotherapy combo not approved for advanced kidney cancer patients on the NHS

December 14, 2018
People with a certain type of advanced kidney cancer will not be able to have a combination of two immunotherapy drugs on the NHS in England.

RNA processing and antiviral immunity

December 14, 2018
The RIG-I like receptors (RLRs) are intracellular enzyme sentries that detect viral infection and initiate a first line of antiviral defense. The cellular molecules that activate RLRs in vivo are not clear.

The 'greying' of T cells: Scientists pinpoint metabolic pathway behind age-related immunity loss

December 13, 2018
The elderly suffer more serious complications from infections and benefit less from vaccination than the general population. Scientists have long known that a weakened immune system is to blame but the exact mechanisms behind ...

New drug seeks receptors in sarcoma cells, attacks tumors in animal trials

December 13, 2018
A new compound that targets a receptor within sarcoma cancer cells shrank tumors and hampered their ability to spread in mice and pigs, a study from researchers at the University of Illinois reports.

Surgery unnecessary for many prostate cancer patients

December 13, 2018
Otherwise healthy men with advanced prostate cancer may benefit greatly from surgery, but many with this diagnosis have no need for it. These conclusions were reached by researchers after following a large group of Scandinavian ...

Scientists create most accurate tool yet developed to predict asthma in young children

December 13, 2018
Scientists at Cincinnati Children's Hospital Medical Center have created and tested a decision tool that appears to be the most accurate, non-invasive method yet developed to predict asthma in young children.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.