There's a better way to decipher DNA's epigenetic code to identify disease

October 8, 2018, Perelman School of Medicine at the University of Pennsylvania
There's a better way to decipher DNA's epigenetic code to identify disease
Enzymes, rather than harsh chemical reactions, can be used to reveal the epigenetic code in DNA. Credit: Rahul Kohli, Univeristy of Pennsylvania

A new method for sequencing the chemical groups attached to the surface of DNA is paving the way for better detection of cancer and other diseases in the blood, according to research from the Perelman School of Medicine at the University of Pennsylvania published today in Nature Biotechnology. These chemical groups mark one of the four DNA "letters" in the genome, and it is differences in these marks along DNA that control which genes are expressed or silenced.

To detect disease earlier and with increased precision, researchers have a growing interest in analyzing free-floating DNA in settings in which there is a limited amount, such as that extruded from tumors into the bloodstream.

"We're hopeful that this method offers the ability to decode on DNA from small and transient populations of cells that have previously been difficult to study, in order to determine whether the DNA is coming from a specific tissue or even a tumor." said co-senior author Rahul Kohli, MD, Ph.D., an assistant professor of Biochemistry and Biophysics, and Medicine.

Researchers from Penn and elsewhere have investigated these DNA modifications over the last two decades to better understand and diagnose an array of disorders, most notably cancer. For the last several decades, the major methods used to decipher the have relied on a chemical called bisulfite. While bisulfite has proven useful, it also presents major limitations: it is unable to differentiate the most common modifications on the DNA building block cytosine, and more significantly, it destroys much of the DNA it touches, leaving little material to sequence in the lab.

The new method described in this paper builds on the fact that a class of immune-defense enzymes, called APOBEC DNA deaminases, can be repurposed for biotech applications. Specifically, the deaminase-guided chemical reaction is able to achieve what bisulfite could do, but without harming DNA.

"This technological advance paves the way to better understand complex biological processes such as how the nervous system develops or how a tumor progresses," said co-senior author Hao Wu, Ph.D., an assistant professor of Genetics. Kohli's graduate student Emily Schutsky is first author on the study.

Using this method, the team showed that determining the epigenetic code of one type of neuron used 1,000-times less DNA than required by the bisulfite-dependent methods. From this, the new could also differentiate between the two most common epigenetic marks, methylation and hydroxmethylation.

"We were able to show that sites along the genome that appear to be modified are in fact very different in terms of the distribution of these two marks," Kohli said. "This finding suggests important and distinctive biological roles for the two marks on the genome."

Explore further: How large is the alphabet of DNA?

More information: Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase , Nature Biotechnology (2018). DOI: 10.1038/nbt.4204 , https://www.nature.com/articles/nbt.4204

Related Stories

How large is the alphabet of DNA?

December 12, 2013
New sequencing technology is transforming epigenetics research, and could greatly improve understanding of cancer, embryo formation, stem cells and brain function.

Discovery of a major technical error will improve epigenetics research

June 26, 2018
An error in one of the most widely used methods in epigenetics, DIP-seq, can cause misleading results, researchers at Linköping University, Sweden, have shown. This may have major significance in the research field, where ...

Identifying epigenetic markers in cancer cells could improve patient treatment

August 12, 2014
Scientists have known for decades that cancer can be caused by genetic mutations, but more recently they have discovered that chemical modifications of a gene can also contribute to cancer. These alterations, known as epigenetic ...

Twin study highlights importance of both genetics and environment on gene activity

August 3, 2018
New research highlights the extent to which epigenetic variation is influenced by both inherited and environmental factors.

Recommended for you

Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
As anyone who has played "Where's Waldo" knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O'Keefe, a Ph.D. student in the Department of Biomedical ...

Researchers use brain cells in a dish to study genetic origins of schizophrenia

October 16, 2018
A study in Biological Psychiatry has established a new analytical method for investigating the complex genetic origins of mental illnesses using brain cells that are grown in a dish from human embryonic stem cells. Researchers ...

Why heart contractions are weaker in those with hypertrophic cardiomyopathy

October 16, 2018
When a young athlete suddenly dies of a heart attack, chances are high that they suffer from familial hypertrophic cardiomyopathy (HCM). Itis the most common genetic heart disease in the US and affects an estimated 1 in 500 ...

Importance of cell cycle and cellular senescence in the placenta discovered

October 15, 2018
Working with researchers from Stanford University and St. Anna Children's Cancer Research, researchers from Jürgen Pollheimer's laboratory at the Medical University of Vienna's Department of Obstetrics and Gynecology have ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Researchers find a 'critical need' for whole genome sequencing of young cancer patients

October 12, 2018
St. Jude Children's Research Hospital has re-defined the gold standard for diagnostic testing of childhood cancer patients in the precision-medicine era and has implemented the testing for new cancer patients. The findings ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.