Time doesn't heal all wounds: How DNA damage as we age causes cancer

October 5, 2018 by Ian Majewski And Edward Chew, The Conversation
Our risk of cancer is determined by a complex mix of genes, environment and lifestyle factors. Credit: Claudia van Zyl

As we age, our bodies inevitably deteriorate. Some changes, like grey hair and wrinkles, are easily visible. Others, like high blood pressure, often go unnoticed, but can be deadly.

Just as our body shows signs of ageing, so does our genome. Damage comes from chemical reactions that alter our DNA, and from errors introduced when it is copied. Our cells protect against these ravages, but these mechanisms are not foolproof and cells gradually accumulate DNA damage over a lifetime.

As a consequence of this damage, your genome is not the same in every cell; you are a patchwork of cells with subtle differences in their DNA. When a cell divides it will pass on these changes, and as they accumulate there is more and more likelihood that there will be consequences.

If these changes – we call them mutations – chip away at the systems that govern cell proliferation and survival, this can lead to .

Our latest research, published today in the journal Blood, provides new clues about how our cells protect their genome and guard against cancer.

Guarding the genome

Nearly 10% of cancers have a familial component. Genes like BRCA1 and TP53 are among the best known cancer susceptibility genes, and both are involved in coordinating the cell's response to DNA damage.

BRCA1 helps to repair a specific type of DNA damage, in which both strands of DNA are broken. Inheriting a defective BRCA1 gene elevates the lifetime risk of both breast and ovarian cancer.

When DNA repair mechanisms break down, cells can accumulate staggering numbers of mutations, and cancer becomes almost inevitable.

Beyond genetics, a complex mix of environmental and lifestyle factors modify cancer risk.

When we read the genome of a cancer it is possible to attribute mutations to certain types of stress. UV radiation, for example, will fuse certain DNA bases. The UV damage signature is writ large in melanoma, a cancer linked to sun exposure.

Lung cancers from smokers and non-smokers have different mutation patterns because of the action of chemicals in cigarette smoke that attack the DNA.

We can also use this approach to diagnose defective DNA repair, as each defect triggers a characteristic pattern of mutations. In this way, mutation signatures can help us understand why a cancer has developed.

A ticking genetic clock

Smoking, UV radiation and X-rays all damage your DNA, but damage also comes from reactive molecules present within the cell. These molecules are fundamental to the chemistry of life – take water, for example.

Water is a very reactive molecule and can do damage to our DNA. One of the most common mutations, either in cancer or in normal cells, results from water molecules reacting with methylated DNA.

DNA methylation is a small chemical modification that acts as a signpost on top of our genetic code. It helps to control which genes are switched on or off. This fine-tuning is essential for normal development, but methylation also makes DNA more susceptible to damage. Most of these events are quickly repaired, but the damage is unrelenting and some sneak through.

Methylation damage is the most prominent feature of an ageing genome. It's so pervasive and reliable it has been proposed as a molecular clock that marks ageing. But our new research shows this process occurs more rapidly in some people.

We found and studied three people whose pathways to repair methylation damage had broken down. They all lacked a DNA repair protein called MBD4, which led to a marked accumulation of methylation damage – as though their cells were ageing prematurely.

All three developed an aggressive form of leukaemia in their early 30s, a cancer which usually wouldn't be seen until the person is in their 60s or 70s.

Methylation damage plays a role in most cancers, but in these cases it was the primary driver of the disease.

While complete inactivation of MDB4 – as occurred in the three participants – is extremely rare, our findings raise the question of how more subtle differences in DNA repair shape cancer risk, particularly in the context of ageing.

Turning back the clock

Ageing contributes to cancer risk in myriad ways. While we've focused here on the buildup of DNA damage, our immune system also plays an important role and tends to fade as we get older.

Lifestyle factors – such as obesity, stress and diet – also provide a cumulative risk that builds over a lifetime.

Understanding the interplay between these factors is key to finding strategies that will effectively diffuse the health consequences associated with ageing.

Our research is helping to tease apart the contribution of DNA damage in different disease processes. Our findings suggest that some people accumulate more DNA than others – their clocks are ticking a little faster – and measuring these differences may help to spot people at risk of developing cancer, or help match them with more effective treatments.

Explore further: New clues about how our body guards against cancer

Related Stories

New clues about how our body guards against cancer

October 4, 2018
Walter and Eliza Hall Institute researchers have uncovered a key factor protecting against age-related DNA damage, providing important clues about how our body guards against cancer.

Researchers map DNA damage links to onset of skin cancer, melanoma

July 6, 2018
A critical link in mapping recurrent mutations of melanoma—the most serious form of skin cancer in humans—has been discovered by researchers at Washington State University School of Molecular Biosciences, in collaboration ...

Risk for some cancers may be determined before birth

January 15, 2018
Normal tissue BRCA1 methylation is associated with risk for high-grade ovarian cancer and may occur as a prenatal event. These findings are published in Annals of Internal Medicine.

Quick-and-dirty DNA repair sets the stage for smoking-related lung cancer

January 26, 2017
The stem cells that proliferate the most in response to damage caused by cigarette smoke repair their DNA using a process prone to errors, setting the stage for lung cancer, according to a study publishing January 26, 2017 ...

Researchers uncover novel role of BRCA1 in regulating the survival of skin stem cells

January 3, 2013
Our DNA, which stores our genetic information, is constantly exposed to damage. If not properly repaired, DNA damage can lead to cell death. This, in turn, can lead to tissue exhaustion and ageing, or induce mutations resulting ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

Recommended for you

Function of neutrophils during tumor progression unraveled

October 15, 2018
Researchers at The Wistar Institute have characterized the function of neutrophils, a type of white blood cells, during early stages of tumor progression, showing that they migrate from the bone marrow to distant sites and ...

Delving where few others have gone, leukemia researchers open new path

October 15, 2018
A Wilmot Cancer Institute study uncovers how a single gene could be at fault in acute myeloid leukemia (AML), one of the deadliest cancers. The breakthrough gives researchers renewed hope that a gene-targeted therapy could ...

3-D mammography detected 34% more breast cancers in screening

October 15, 2018
In traditional mammography screening, all breast tissue is captured in a single image. Breast tomosynthesis, on the other hand, is three-dimensional and works according to the same principle as what is known as tomography. ...

More clues revealed in link between normal breast changes and invasive breast cancer

October 15, 2018
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process—changes in mammary glands to accommodate breastfeeding—uses a molecular process believed ...

Cancer stem cells use 'normal' genes in abnormal ways

October 12, 2018
CDK1 is a "normal" protein—its presence drives cells through the cycle of replication. And MHC Class I molecules are "normal" as well—they present bits of proteins on the surfaces of cells for examination by the immune ...

Obesity linked to increased risk of early-onset colorectal cancer

October 12, 2018
Women who are overweight or obese have up to twice the risk of developing colorectal cancer before age 50 as women who have what is considered a normal body mass index (BMI), according to new research led by Washington University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.