Neurons reliably respond to straight lines

October 23, 2018 by Jocelyn Duffy, Carnegie Mellon University
Neurons reliably respond to straight lines
Over time, the same neurons are activated in response to the visual stimuli of straight lines. Credit: Carnegie Mellon University

Single neurons in the brain's primary visual cortex can reliably detect straight lines, even though the cellular makeup of the neurons is constantly changing, according to a new study by Carnegie Mellon University neuroscientists, led by Associate Professor of Biological Sciences Sandra Kuhlman. The study's findings, published in Scientific Reports on Oct. 16, lay the groundwork for future studies into how the sensory system reacts and adapts to changes.

Most of us assume that when we see something regularly, like our house or the building where we work, our brain is responding in a reliable way with the same firing. It would make sense to assume that the same would hold true when we see simple horizontal or vertical lines.

"The building our lab is in has these great stately columns," said Kuhlman. "The logical assumption is that as we approach the building each day our brains are recognizing the columns, which are essentially straight lines, in the same way. Scientifically, we had no idea if this was true."

While Kuhlman and other scientists believed that this idea of neuronal reliability is a likely hypothesis, they also had reason to believe it might not be the case. The protein components that constitute the cellular makeup of individual neurons continually change over the course of hours or days, which might alter when they respond to a given stimulus. Neither hypothesis had been proven experimentally.

In the case of vision, researchers did know that when we first encounter a stimulus, a group of neurons in the brain's respond to the stimulus' orientation, determining if the stimulus is horizontal, vertical or tilted at an angle. The neurons pass this information deeper into the brain's visual cortex to the next stage of processing. But they didn't know which neurons were responding and if the same ones responded each time.

A new imaging technology called two-photon microscopy allowed neuroscientists in Kuhlman's lab to visualize between 400-600 neurons at once in the primary visual cortex of a mouse model that expresses a fluorescent protein when a neuron is activated. In the experiment, the mouse was shown a sequence pattern of differentially oriented lines—some horizontal, some vertical, and others at angles. These stimuli activated excitatory neurons and caused them to emit a fluorescent signal, which could be seen using the microscope technique.

Over a two-week period, the mice were exposed to the same visual stimuli and researchers measured the response profile of each of the hundreds of neurons. They found that, throughout the study, about 80 percent of the tracked neurons were reliably activated by the same oriented lines. They also reliably remained silent to the same oriented lines. This indicated that they maintained the same functional role within the brain circuit for days.

The researchers were able to test an extensive range of stimuli, including measuring how the neurons responded to lines of varying thickness. They found that some neurons were unstable in how they responded to thickness, while maintaining their original selectivity to line orientation. Kuhlman noted that this indicated that can continually encode particular visual features while still being able to adapt to others.

"It was interesting to see plasticity in one feature, but not another," said Kuhlman. "This gives us a key insight into how our brains may maintain a stable perception of the world while incorporating new information. For example, you want to be able to recognize your building even if slight updates are made, such as if the columns of your building are cleaned. It appears that we can update one aspect of a stimulus feature without completely altering the functional response property of a given neuron."

The researchers will use this dataset as a control for their next set of studies that aim to see how these neurons respond when there are changes in the visual system, such as while learning a new visual task or following recovery from ocular occlusion.

Explore further: Neuronal feedback could change what we 'see'

More information: Brian B. Jeon et al, Feature selectivity is stable in primary visual cortex across a range of spatial frequencies, Scientific Reports (2018). DOI: 10.1038/s41598-018-33633-2

Related Stories

Neuronal feedback could change what we 'see'

March 30, 2016
Ever see something that isn't really there? Could your mind be playing tricks on you? The "tricks" might be your brain reacting to feedback between neurons in different parts of the visual system, according to a study published ...

Waking up the visual system

October 3, 2014
The ways that neurons in the brain respond to a given stimulus depends on whether an organism is asleep, drowsy, awake, paying careful attention or ignoring the stimulus. However, while the properties of neural circuits in ...

Understanding how visual information guides behavior

August 31, 2018
To understand more about how we respond to what we see around us, a team of scientists at NERF has zoomed in on the organization of neurons in the superior colliculus, a midbrain structure that mediates orientation responses ...

Synapses in the brain mirror the structure of the visual world

July 12, 2017
The research team of Prof. Sonja Hofer at the Biozentrum, University of Basel, has discovered why our brain might be so good at perceiving edges and contours. Neurons that respond to different parts of elongated edges are ...

Study reveals cortical circuits that encode black and white

November 18, 2015
While some things may be 'as simple as black and white,' this has not been the case for the circuits in the brain that make it possible for you to distinguish black from white. The patterns of light and dark that fall on ...

Scientists visualize the connections between eye and brain

July 2, 2018
Most of the human brain's estimated 86 billion nerve cells, or neurons, can ultimately engage in a two-way dialogue with any other neuron. To shed more light on how neurons in this labyrinthine network integrate information—that ...

Recommended for you

Neuroimaging study reveals 'hot spot' for cue-reactivity in substance-dependent population

November 20, 2018
When patients with dependence on alcohol, cocaine or nicotine are shown drug cues, or images related to the substance, an area of their brain known as the medial prefrontal cortex (mPFC) shows increased activity, report investigators ...

When storing memories, brain prioritizes those experiences that are most rewarding

November 20, 2018
The brain's ability to preserve memories lies at the heart of our basic human experience. But how does the brain's mechanism for memory make sure we remember the most significant events and not clog our minds with superfluous ...

To predict the future, the brain has two clocks

November 20, 2018
That moment when you step on the gas pedal a split second before the light changes, or when you tap your toes even before the first piano note of Camila Cabello's "Havana" is struck. That's anticipatory timing.

Researchers hope to be able to replace dysfunctional brain cells

November 20, 2018
A new study by researchers at Karolinska Institutet supports the theory that replacement of dysfunctional immune cells in the brain has therapeutic potential for neurodegenerative diseases like ALS and Alzheimer's disease. ...

White matter pathway and individual variability in human stereoacuity

November 20, 2018
Researchers in the Center for Information and Neural Networks (CiNet), the National Institute of Information and Communications Technology and Osaka University have identified a human white matter pathway associated with ...

Can genetic therapy help kids with Angelman syndrome overcome seizures?

November 20, 2018
Angelman syndrome is a genetic disease with no cure. Children grow up with severe intellectual disabilities and a range of other problems, arguably the worst of which are epileptic seizures. Now scientists at the UNC School ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.