Synapses in the brain mirror the structure of the visual world

July 12, 2017
Our brain is especially good at perceiving lines and contours even if they do not actually exist, such as the blue triangle in the foreground of this optical illusion. The pattern of neuronal connections in the brain supports this ability. Credit: University of Basel, Biozentrum

The research team of Prof. Sonja Hofer at the Biozentrum, University of Basel, has discovered why our brain might be so good at perceiving edges and contours. Neurons that respond to different parts of elongated edges are connected and thus exchange information. This can make it easier for the brain to identify contours of objects. The results of the study are now published in the journal Nature.

Individual visual stimuli are not processed independently by our brain. Rather neurons exchange incoming information to form a coherent perceptual image from the myriad of visual details impinging on our eyes. How our visual perception arises from these interactions is still unclear. This is partly due to the fact that we still know relatively little about the rules that determine which neurons in the brain are connected to each other, and what information they exchange. The research team of Prof. Sonja Hofer at the Biozentrum, University Basel studies neuronal networks in the brain. She has now investigated in the mouse model what information individual neurons in the visual cortex receive from other neurons about the wider .

Neurons receive information from large parts of the visual field

The visual cortex, the largest part of the human brain, is responsible for analyzing information from the eyes and enables us to perceive the visual world. Different neurons in this brain area react to components of the visual scene at specific positions in our visual field. Sonja Hofer and her team could show that individual neurons also receive extensive additional from the remaining visual field. "This is not surprising, because how we perceive individual visual stimuli strongly depends on their surrounding visual environment", Hofer explains. Individual parts of an image are, for instance, merged into lines, contours and objects.

Edges in our environment are mirrored in the brain

The new study shows that neurons are most likely to be connected if they react to edges that lie on a common axis. "Our visual environment contains many long lines and contours", Sonja Hofer explains. "The structure of the world around us is therefore mirrored in the pattern of synapses in the brain". Hofer's team believes that this specific brain connectivity might facilitate the perception of elongated lines and edges: that react to different parts of such edges are connected, can increase each other's activity and therefore boost the response that contributes to the perception of these visual features.

Our brain is so good at identifying contours and objects in images that it is sometimes deceived into seeing them even if they do not actually exist (such as the edges of the blue triangle in the foreground of the figure). Such optical illusions show how primed our is to detect lines and object contours", says Hofer. "Our findings reveal a mechanism that can contribute to this skill".

Explore further: Thalamus found to add contextual information to visual signals

More information: Florencia M. Iacaruso; Ioana T. Gasler; Sonja B. Hofer: Synaptic organization of visual space in primary visual cortex. Nature (2017) DOI: 10.1038/nature23019

Related Stories

Thalamus found to add contextual information to visual signals

December 23, 2015
The thalamus not only relays visual signals from the eye to the visual cortex as previously thought, but also conveys additional, contextual information. Integrating these different signals is essential to understand and ...

How the brain learns to distinguish between what is important and what is not

June 17, 2015
Traffic lights, neon-lit advertisements, a jungle of road signs. When learning to drive, it is often very difficult to distinguish between important and irrelevant information. How the brain learns the importance of certain ...

Neuronal feedback could change what we 'see'

March 30, 2016
Ever see something that isn't really there? Could your mind be playing tricks on you? The "tricks" might be your brain reacting to feedback between neurons in different parts of the visual system, according to a study published ...

Blind people have brain map for 'visual' observations too

May 17, 2017
Is what you're looking at an object, a face, or a tree? When processing visual input, our brain uses different areas to recognize faces, body parts, scenes, and objects. Scientists at KU Leuven (University of Leuven), Belgium, ...

Neural connections mapped with unprecedented detail

July 4, 2016
A team of neuroscientists at the Champalimaud Centre for the Unknown, in Lisbon, has been able to map single neural connections over long distances in the brain. "These are the first measurements of neural inputs between ...

Researchers identify specific neurons that distinguish between reality and imagination

June 1, 2017
New Western University research shows that neurons in the part of the brain found to be abnormal in psychosis are also important in helping people distinguish between reality and imagination.

Recommended for you

How electroconvulsive therapy relieves depression per animal experiments

December 18, 2017
In a study using genetically engineered mice, Johns Hopkins researchers have uncovered some new molecular details that appear to explain how electroconvulsive therapy (ECT) rapidly relieves severe depression in mammals, presumably ...

'Simple, but powerful' model reveals mechanisms behind neuron development

December 18, 2017
All things must come to an end. This is particularly true for neurons, especially the extensions called axons that transmit electrochemical signals to other nerve cells. Without controlled termination of individual neuron ...

Restless leg syndrome risk factor for heart-related death

December 18, 2017
Restless leg syndrome (RLS) is associated with increased risk of cardiovascular disease (CVD)-related death among women, according to research published online today (Dec. 15) in the January 2018 issue of Neurology, the medical ...

Study finds graspable objects grab attention more than images of objects do

December 15, 2017
Does having the potential to act upon an object have a unique influence on behavior and brain responses to the object? That is the question Jacqueline Snow, assistant professor of psychology at the University of Nevada, Reno, ...

Journaling inspires altruism through an attitude of gratitude

December 14, 2017
Gratitude does more than help maintain good health. New research at the University of Oregon finds that regularly noting feelings of gratitude in a journal leads to increased altruism.

Little understood cell helps mice see color

December 14, 2017
Researchers at the University of Colorado Anschutz Medical Campus have discovered that color vision in mice is far more complex than originally thought, opening the door to experiments that could potentially lead to new treatments ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

thingumbobesquire
not rated yet Jul 13, 2017
The principle of a Gauss unit sphere normal mapping that creates the equivalent of a Riemann manifold surface function is germane to this research. http://thingumbob...ogy.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.