Study finds probiotic bacillus eliminates staphylococcus bacteria

October 10, 2018, NIH/National Institute of Allergy and Infectious Diseases
Woman selling vegetable snacks in a Thai market -- a possible source of probiotic Bacillus spores. Credit: NIAID

A new study from National Institutes of Health scientists and their Thai colleagues shows that a "good" bacterium commonly found in probiotic digestive supplements helps eliminate Staphylococcus aureus, a type of bacteria that can cause serious antibiotic-resistant infections. The researchers, led by scientists at NIH's National Institute of Allergy and Infectious Diseases (NIAID), unexpectedly found that Bacillus bacteria prevented S. aureus bacteria from growing in the gut and nose of healthy individuals. Then, using a mouse study model, they identified exactly how that happens. Researchers from Mahidol University and Rajamangala University of Technology in Thailand collaborated on the project.

"Probiotics frequently are recommended as dietary supplements to improve digestive health," said NIAID Director Anthony S. Fauci, M.D. "This is one of the first studies to describe precisely how they may work to provide health benefits. The possibility that oral Bacillus might be an effective alternative to antibiotic treatment for some conditions is scientifically intriguing and definitely worthy of further exploration."

Staphylococcus infections cause tens of thousands of deaths worldwide each year. Methicillin-resistant Staphylococcus aureus, or MRSA, is familiar to many people as a cause of serious disease. Less well known is that S. aureus often can live in the nose or gut without causing any harm. However, if the skin barrier is broken, or the immune system compromised, these colonizing can cause serious infections.

One strategy to prevent Staph infections is to eliminate S. aureus colonization. However, some decolonization strategies are controversial because they require considerable amounts of topical antibiotics and have limited success, partly because they target only the nose and bacteria quickly recolonized from the gut.

The scientists recruited 200 volunteers in rural Thailand for the study. This population, they speculated, would not be as affected by food sterilization or antibiotics as people in highly developed urban areas. The scientists first analyzed fecal samples from each of the study participants for bacteria correlated with the absence of S. aureus. They found 101 samples positive for Bacillus, primarily B. subtilis—the type found mixed with other bacteria in many products. Bacillus bacteria form spores that can survive harsh environments and commonly are ingested naturally with vegetables, allowing them to temporarily grow in the intestine. The scientists then sampled the same 200 people for S. aureus in the gut (25 positive) and nose (26 positive). Strikingly, they found no S. aureus in any of the samples where Bacillus were present.

In mouse studies, the scientists discovered an S. aureus sensing system that must function for the bacteria to grow in the gut. Intriguingly, all of the more than 100 Bacillus isolates they had recovered from the human feces efficiently inhibited that system.

Using chromatography and mass spectrometry techniques, the scientists identified fengycins, a specific class of lipopeptides—molecules that are part peptide and part lipid—as the specific Bacillus substance that inhibited the S. aureus sensing system. Additional tests showed that fengycins had the same effect on several different strains of S. aureus—including high-risk USA300 MRSA which causes most community-associated MRSA infections in the United States and is an increasingly common cause of healthcare-associated MRSA infections.

To further validate their findings, the scientists colonized the gut of mice with S. aureus and fed them B. subtilis spores to mimic probiotic intake. Probiotic Bacillus given every two days eliminated S. aureus in the guts of the mice. The same test using Bacillus where fengycin production had been removed had no effect, and S. aureus grew as expected.

The NIAID and Thai scientists next plan to test whether a probiotic product that contains only B. subtilis can eliminate S. aureus in people. They plan to enroll more Thai volunteers for the project. Michael Otto, Ph.D., the NIAID lead investigator, says, "Ultimately, we hope to determine if a simple probiotic regimen can be used to reduce MRSA rates in hospitals."

Explore further: Researcher exposes MRSA risk at northeast Ohio beaches

More information: Pipat Piewngam et al, Pathogen elimination by probiotic Bacillus via signalling interference, Nature (2018). DOI: 10.1038/s41586-018-0616-y

Related Stories

Researcher exposes MRSA risk at northeast Ohio beaches

December 14, 2017
Beachgoers know there is always some risk of disease, but a recent study by a Kent State University researcher shows they may not be aware of all the dangers the beach poses.

Treatment for MRSA no longer more costly than for susceptible Staph aureus infections

May 10, 2018
A new study from the Center for Disease Dynamics, Economics & Policy (CDDEP), with collaborators from Johns Hopkins University and University of Texas Southwestern Medical Center, found that infections caused by one of the ...

Researchers pioneer new eczema treatment

June 4, 2018
Eczema is the most common and stubborn skin disease in the world, but a study led by Dr. Donald Leung of the University of Colorado Anschutz Medical Campus is offering new hope for those with atopic dermatitis.

New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria

August 17, 2016
Staphylococcus aureus is a common colonizer of the human body. Although, one quarter of the U.S. population live with the bacteria and never get sick, having S. aureus present in the nostrils is a risk for infections that ...

Recommended for you

PET scans to optimize tuberculosis meningitis treatments and personalize care, study finds

December 6, 2018
Although relatively rare in the United States, and accounting for fewer than 5 percent of tuberculosis cases worldwide, TB of the brain—or tuberculosis meningitis (TBM)—is often deadly, always hard to treat, and a particular ...

Silicosis is on the rise, but is there a therapeutic target?

December 6, 2018
Researchers from the CNRS, the University of Orléans, and the company Artimmune, in collaboration with Turkish clinicians from Atatürk University, have identified a key mechanism of lung inflammation induced by silica exposure, ...

Infectivity of different HIV-1 strains may depend on which cell receptors they target

December 6, 2018
Distinct HIV-1 strains may differ in the nature of the CCR5 molecules to which they bind, affecting which cells they can infect and their ability to enter cells, according to a study published December 6 in the open-access ...

Protecting cell powerhouse paves way to better treatment of acute kidney injury

December 6, 2018
For the first time, scientists have described the body's natural mechanism for temporarily protecting the powerhouses of kidney cells when injury or disease means they aren't getting enough blood or oxygen.

New study uncovers why Rift Valley fever is catastrophic to developing fetuses

December 5, 2018
Like Zika, infection with Rift Valley fever virus can go unnoticed during pregnancy, all the while doing irreparable—often lethal—harm to the fetus. The results of a new study, led by researchers at the University of ...

Study highlights potential role of bioaerosol sampling to address airborne biological threats

December 5, 2018
As a leading global city with a high population density, Singapore is vulnerable to the introduction of biological threats. Initiating an early emergency response to such threats calls for the rapid identification of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.