Brain learns to recognize familiar faces regardless of where they are in the visual field

November 8, 2018, Dartmouth College

A Dartmouth study finds that recognition of faces varies by where they appear in the visual field and this variability is reduced by learning familiar faces through social interactions. These biases are stable and idiosyncratic. More importantly, these biases are reduced for more familiar identities suggesting that the brain recognizes personally familiar faces more uniformly across the visual field. The findings suggest that repeated social interactions may tune populations of visual neurons in the face processing network to enable consistent and rapid recognition of familiar faces. The study was published in eNeuro, an open-access journal of the Society for Neuroscience.

Prior research in human has often focused on how people perceive unfamiliar faces but this is one of the first to examine how early visual processes may be tuned by regular, social interactions with others to optimize one's ability to recognize faces of people who are important to us.

"For many of us, we spend most of our time with people we know, so understanding the underlying brain activity that enables us to recognize our friends, family, colleagues and peers, is essential to learning more about how we process relevant social stimuli," said senior author Maria Gobbini, an associate professor of psychological and brain sciences at Dartmouth.

To understand how the brain processes personally familiar faces across different retinal locations, study participants (graduate students) were asked to identify either two or three photographs of their peers' faces. As participants stared at a central red dot on a computer screen, an image of a peer's face would flash briefly on the screen peripherally in one of eight locations. After the image disappeared, they were prompted to identify which person they saw. Following the experiment, participants were asked to rate how well they knew the person in the image on a scale of one (not close) to seven (very close). The team then ran computational simulations to test the effect of learning in face-responsive cortical areas. The results of the simulation suggest that early face areas in face processing pathways are more likely to show a bias that can be tuned by learning.

Previous research in facial and identity has shown that the perception of gender and age varies across retinal locations as well. For example, an androgynous face may appear as a female face when shown in a specific visual location and as a male face when shown in another . Gobbini and colleagues' new study found that this same type of variability across the visual field (idiosynchratic, retinotopic biases) is found for identification of faces that are low in familiarity but is reduced for highly familiar faces. The results suggest that personally familiar may be detected in a prioritized way at an early stage of visual processing. "Much in the same way that the human language system is adapted and optimized to process an individual's native language, including auditory recognition of speech sounds, the face perception system is finely tuned in each individual for interaction with the people that play an important role in that person's life, and this tuning extends to learning at early stages of visual processing," concludes Gobbini.

Explore further: Learning to see friendly faces in different places

More information: Matteo Visconti di Oleggio Castello et al, Idiosyncratic, Retinotopic Bias in Face Identification Modulated by Familiarity, eneuro (2018). DOI: 10.1523/ENEURO.0054-18.2018

Related Stories

Learning to see friendly faces in different places

October 1, 2018
Meaningful social interactions train visual cortex neurons to recognize a familiar face in different visual locations, suggests new research published in eNeuro. The study demonstrates how the brain learns to perceive other ...

Inability to recognize faces linked to broader visual recognition problems

June 25, 2018
Imagine that you're supposed to meet colleagues for dinner, only you can't remember what their faces look like. For some, this is a reality, as people with face blindness or developmental prosopagnosia (DP) have severe difficulties ...

Do people subconsciously judge face-likeness?

May 14, 2018
The research team at the Visual Perception and Cognition Laboratory of the Toyohashi University of Technology has revealed that face-likeness is judged by early visual processing at around 100 milliseconds after viewing an ...

Study finds context is key in helping us to recognize a face

November 13, 2013
Why does it take longer to recognise a familiar face when seen in an unfamiliar setting, like seeing a work colleague when on holiday? A new study published today in Nature Communications has found that part of the reason ...

How the brain recognizes familiar faces

August 10, 2017
There's nothing quite like the rush of recognition that comes from seeing a familiar face. But scientists have been hard-pressed to explain how we identify well-known faces—or how that process differs from the way we perceive ...

New study examines brain processes behind facial recognition

April 18, 2011
When you think you see a face in the clouds or in the moon, you may wonder why it never seems to be upside down.

Recommended for you

Concussion tied to suicide risk

November 12, 2018
(HealthDay)—People who have experienced either a concussion or a mild traumatic brain injury are twice as likely to commit suicide than others, a new review suggests.

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

In live brain function, researchers are finally seeing red

November 12, 2018
For years, green has been the most reliable hue for live brain imaging, but after using a new high-throughput screening method, researchers at the John B. Pierce Laboratory and the Yale School of Medicine, together with collaborators ...

Researchers identify the neural basis of threatening and aggressive behaviors in Drosophila

November 9, 2018
You can always tell when two guys are about to get into a fight. It starts with angry stares, puffed-out chests, arms tossed out to the side, and little, aggressive starts forward. Neuroscientists call the combination of ...

Multiple sclerosis: Accumulation of B cells triggers nervous system damage

November 9, 2018
B cells are important in helping the immune system fight pathogens. However, in the case of the neurological autoimmune disease multiple sclerosis (MS), they can damage nerve tissue. When particular control cells are missing, ...

Monkey gaze study shows dopamine's role in response inhibition

November 9, 2018
University of Tsukuba researchers report the importance of the brain's dopaminergic system for inhibiting already-planned actions. They trained monkeys to redirect their gaze toward targets presented on a screen, apart from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.