Could consciousness all come down to the way things vibrate?

November 9, 2018 by Tam Hunt, The Conversation
What do synchronized vibrations add to the mind/body question? Credit: agsandrew/Shutterstock.com

Why is my awareness here, while yours is over there? Why is the universe split in two for each of us, into a subject and an infinity of objects? How is each of us our own center of experience, receiving information about the rest of the world out there? Why are some things conscious and others apparently not? Is a rat conscious? A gnat? A bacterium?

These questions are all aspects of the ancient "mind-body problem," which asks, essentially: What is the relationship between mind and matter? It's resisted a generally satisfying conclusion for thousands of years.

The mind-body problem enjoyed a major rebranding over the last two decades. Now it's generally known as the "hard problem" of consciousness, after philosopher David Chalmers coined this term in a now classic paper and further explored it in his 1996 book, "The Conscious Mind: In Search of a Fundamental Theory."

Chalmers thought the mind-body problem should be called "hard" in comparison to what, with tongue in cheek, he called the "easy" problems of neuroscience: How do neurons and the brain work at the physical level? Of course they're not actually easy at all. But his point was that they're relatively easy compared to the truly difficult problem of explaining how consciousness relates to matter.

Over the last decade, my colleague, University of California, Santa Barbara psychology professor Jonathan Schooler and I have developed what we call a "resonance theory of consciousness." We suggest that resonance – another word for synchronized vibrations – is at the heart of not only human consciousness but also animal consciousness and of physical reality more generally. It sounds like something the hippies might have dreamed up – it's all vibrations, man! – but stick with me.

All about the vibrations

All things in our universe are constantly in motion, vibrating. Even objects that appear to be stationary are in fact vibrating, oscillating, resonating, at various frequencies. Resonance is a type of motion, characterized by oscillation between two states. And ultimately all matter is just vibrations of various underlying fields. As such, at every scale, all of nature vibrates.

Something interesting happens when different vibrating things come together: They will often start, after a little while, to vibrate together at the same frequency. They "sync up," sometimes in ways that can seem mysterious. This is described as the phenomenon of spontaneous self-organization.

Mathematician Steven Strogatz provides various examples from physics, biology, chemistry and neuroscience to illustrate "sync" – his term for resonance – in his 2003 book "Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life," including:

When fireflies of certain species come together in large gatherings, they start flashing in sync, in ways that can still seem a little mystifying.Lasers are produced when photons of the same power and frequency sync up.The moon's rotation is exactly synced with its orbit around the Earth such that we always see the same face.

How do things in nature – like flashing fireflies – spontaneously synchronize? Credit: Suzanne Tucker/Shutterstock.com

Examining resonance leads to potentially deep insights about the nature of consciousness and about the universe more generally.

Sync inside your skull

Neuroscientists have identified sync in their research, too. Large-scale neuron firing occurs in human brains at measurable frequencies, with mammalian consciousness thought to be commonly associated with various kinds of neuronal sync.

For example, German neurophysiologist Pascal Fries has explored the ways in which various electrical patterns sync in the brain to produce different types of human consciousness.

Fries focuses on gamma, beta and theta waves. These labels refer to the speed of electrical oscillations in the brain, measured by electrodes placed on the outside of the skull. Groups of neurons produce these oscillations as they use electrochemical impulses to communicate with each other. It's the speed and voltage of these signals that, when averaged, produce EEG waves that can be measured at signature cycles per second.

Gamma waves are associated with large-scale coordinated activities like perception, meditation or focused consciousness; beta with maximum brain activity or arousal; and theta with relaxation or daydreaming. These three wave types work together to produce, or at least facilitate, various types of human consciousness, according to Fries. But the exact relationship between electrical brain waves and consciousness is still very much up for debate.

Fries calls his concept "communication through coherence." For him, it's all about neuronal synchronization. Synchronization, in terms of shared electrical oscillation rates, allows for smooth communication between neurons and groups of neurons. Without this kind of synchronized coherence, inputs arrive at random phases of the neuron excitability cycle and are ineffective, or at least much less effective, in communication.

A resonance theory of consciousness

Our resonance theory builds upon the work of Fries and many others, with a broader approach that can help to explain not only human and mammalian consciousness, but also consciousness more broadly.

Based on the observed behavior of the entities that surround us, from electrons to atoms to molecules, to bacteria to mice, bats, rats, and on, we suggest that all things may be viewed as at least a little conscious. This sounds strange at first blush, but "panpsychism" – the view that all matter has some associated consciousness – is an increasingly accepted position with respect to the nature of consciousness.

Each type of synchronized activity is associated with certain types of brain function. Credit: artellia/Shutterstock.com

The panpsychist argues that consciousness did not emerge at some point during evolution. Rather, it's always associated with matter and vice versa – they're two sides of the same coin. But the large majority of the mind associated with the various types of matter in our universe is extremely rudimentary. An electron or an atom, for example, enjoys just a tiny amount of consciousness. But as matter becomes more interconnected and rich, so does the mind, and vice versa, according to this way of thinking.

Biological organisms can quickly exchange information through various biophysical pathways, both electrical and electrochemical. Non-biological structures can only exchange information internally using heat/thermal pathways – much slower and far less rich in information in comparison. Living things leverage their speedier information flows into larger-scale consciousness than what would occur in similar-size things like boulders or piles of sand, for example. There's much greater internal connection and thus far more "going on" in biological structures than in a boulder or a pile of sand.

Under our approach, boulders and piles of sand are "mere aggregates," just collections of highly rudimentary conscious entities at the atomic or molecular level only. That's in contrast to what happens in biological life forms where the combinations of these micro-conscious entities together create a higher level macro-conscious entity. For us, this combination process is the hallmark of biological life.

The central thesis of our approach is this: the particular linkages that allow for large-scale consciousness – like those humans and other mammals enjoy – result from a shared resonance among many smaller constituents. The speed of the resonant waves that are present is the limiting factor that determines the size of each conscious entity in each moment.

As a particular shared resonance expands to more and more constituents, the new conscious entity that results from this resonance and combination grows larger and more complex. So the shared resonance in a human brain that achieves gamma synchrony, for example, includes a far larger number of neurons and neuronal connections than is the case for beta or theta rhythms alone.

What about larger inter-organism resonance like the cloud of fireflies with their little lights flashing in sync? Researchers think their bioluminescent resonance arises due to internal biological oscillators that automatically result in each firefly syncing up with its neighbors.

Is this group of fireflies enjoying a higher level of group consciousness? Probably not, since we can explain the phenomenon without recourse to any intelligence or consciousness. But in biological structures with the right kind of information pathways and processing power, these tendencies toward self-organization can and often do produce larger-scale conscious entities.

Our theory of consciousness attempts to provide a unified framework that includes neuroscience, as well as more fundamental questions of neurobiology and biophysics, and also the philosophy of mind. It gets to the heart of the differences that matter when it comes to and the evolution of physical systems.

It is all about vibrations, but it's also about the type of vibrations and, most importantly, about shared vibrations.

Explore further: How a trippy 1980s video effect might help to explain consciousness

Related Stories

How a trippy 1980s video effect might help to explain consciousness

November 2, 2018
Explaining consciousness is one of the hardest problems in science and philosophy. Recent neuroscientific discoveries suggest that a solution could be within reach – but grasping it will mean rethinking some familiar ideas. ...

Changing our understanding of consciousness

June 9, 2016
Measuring and defining consciousness has been an ongoing challenge for neuroscientists, philosophers and psychologists for centuries. The concept of levels of consciousness is mostly theoretical, limiting the abilities of ...

'The consciousness instinct'—New book examines the mystery of how the brain makes the mind

May 9, 2018
Despite massive breakthroughs in the field of neuroscience over the last century, one area continues to baffle both scientists and philosophers: How do molecules, cells, neurotransmitters and other brain "stuff" create the ...

Why we need to figure out a theory of consciousness

May 11, 2018
Understanding the biology behind consciousness (or self-awareness) is considered by some to be the final frontier of science. And over the last decade, a fledgling community of "consciousness scientists" have gathered some ...

Consciousness has less control than believed, according to new theory

June 23, 2015
Consciousness—the internal dialogue that seems to govern one's thoughts and actions—is far less powerful than people believe, serving as a passive conduit rather than an active force that exerts control, according to ...

What makes us conscious?

March 16, 2016
Do you think that the machine you are reading this story on, right now, has a feeling of "what it is like" to be in its state?

Recommended for you

Scientists identify novel target for neuron regeneration and functional recovery in spinal cord injury

November 19, 2018
Restoring the ability to walk following spinal cord injury requires neurons in the brain to reestablish communication pathways with neurons in the spinal cord. Mature neurons, however, are unable to regenerate their axons ...

How the brain switches between different sets of rules

November 19, 2018
Cognitive flexibility—the brain's ability to switch between different rules or action plans depending on the context—is key to many of our everyday activities. For example, imagine you're driving on a highway at 65 miles ...

Mutation that causes autism and intellectual disability makes brain less flexible

November 19, 2018
About 1 percent of patients diagnosed with autism spectrum disorder and intellectual disability have a mutation in a gene called SETD5. Scientists have now discovered what happens on a molecular level when the gene is mutated ...

Signal peptides' novel role in glutamate receptor trafficking and neural synaptic activity

November 19, 2018
Glutamate is the major excitatory neurotransmitter in the brain, and the postsynaptic expression level of glutamate receptors is a critical factor in determining the efficiency of information transmission and the activity ...

MDMA makes people cooperative, but not gullible

November 19, 2018
New research from King's College London has found that MDMA, the main ingredient in ecstasy, causes people to cooperate better—but only with trustworthy people. In the first study to look in detail at how MDMA impacts cooperative ...

Study explains behavioral reaction to painful experiences

November 19, 2018
Exposure to uncomfortable sensations elicits a wide range of appropriate and quick reactions, from reflexive withdrawal to more complex feelings and behaviors. To better understand the body's innate response to harmful activity, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.