Researchers use MRI to predict Alzheimer's disease

November 20, 2018, Radiological Society of North America
Researchers use MRI to predict Alzheimer's disease
Areas of reduced fractional anisotropy -- a diffusion MR imaging marker of white matter damage -- in 20 persons who develop Alzheimer's dementia compared to 20 who remain cognitively normal. These areas show up as blue-colored voxel overlaid onto a white matter skeleton (yellow colors) overlaid onto a standard template brain. Credit: Radiological Society of North America

MRI brain scans perform better than common clinical tests at predicting which people will go on to develop Alzheimer's disease, according to a study being presented next week at the annual meeting of the Radiological Society of North America (RSNA).

Alzheimer's disease is a progressive, irreversible brain disorder that destroys memory and thinking skills. The disease affects 5.5 million Americans, according to the National Institutes of Health.

"Alzheimer's disease is the most common cause of dementia in the world and is expected to increase globally, and especially in the U.S., as the population gets older," said the study's lead author Cyrus A. Raji, M.D., Ph.D., assistant professor of radiology at the Mallinckrodt Institute of Radiology at Washington University School of Medicine in St. Louis. "As we develop new drug therapies and study them in trials, we need to identify individuals who will benefit from these drugs earlier in the course of the disease."

Common predictive models like standardized questionnaires used to measure cognition and tests for the APOE4 gene, a gene variant associated with a higher risk of Alzheimer's disease, have limitations and—with accuracy rates of about 70-71 percent—fail to identify many people who go on to develop the disease.

MRI exams of the brain using diffusion tensor imaging (DTI) are a promising option for analysis of dementia risk. These exams assess the condition of the brain's white matter.

"With DTI you look at the movement of water molecules along white matter tracts, the telephone cables of brain," Dr. Raji said. "When these tracts are not well connected, cognitive problems can result."

DTI provides different metrics of white matter integrity, including fractional anisotropy (FA), a measure of how well water molecules move along white matter tracts. A higher FA value indicates that water is moving in a more orderly fashion along the tracts, while a lower value means that the tracts are likely damaged.

For the new study, Dr. Raji and colleagues set out to quantify differences in DTI in people who decline from normal cognition or mild cognitive impairment to Alzheimer's dementia compared to controls who do not develop dementia. They performed brain DTI exams on 61 people drawn from the Alzheimer's Disease Neuroimaging Initiative, a major, multisite study focusing on the progression of the disease.

About half of the patients went on to develop Alzheimer's disease, and DTI identified quantifiable differences in the brains of those patients. People who developed the disease had lower FA compared with those who didn't, suggesting white matter damage. They also had statistically significant reductions in certain frontal white matter tracts.

"DTI performed very well compared to other clinical measures," Dr. Raji said. "Using FA values and other associated global metrics of white matter integrity, we were able to achieve 89 percent accuracy in predicting who would go onto develop Alzheimer's disease. The Mini-mental State Examination and APOE4 gene testing have accuracy rates of about 70—71 percent."

The researchers conducted a more detailed analysis of the white tracts in about 40 of the study participants. Among those patients, the technique achieved 95 percent accuracy, Dr. Raji said.

While more work is needed before the approach is ready for routine clinical use, the results point to a future role for DTI in the diagnostic workup of people at risk for Alzheimer's disease. Many people already receive MRI as part of their care, so DTI could add significant value to the exam without substantially increasing the costs, Dr. Raji said.

Perhaps most importantly, MRI measures of integrity could speed interventions that slow the course of the disease or even delay its onset.

"Research shows that Alzheimer's risk can be reduced by addressing modifiable risk factors like obesity and diabetes," Dr. Raji said. "With , we can enact lifestyle interventions and enlist volunteers into drug trials earlier."

Explore further: Probing the pathology of impaired cognition

Related Stories

Probing the pathology of impaired cognition

October 29, 2018
Neurofilament light (NFL) is a support protein within large axons in the brain's white matter that supports nerve signal transmission. When axons are injured, increased NFL concentrations are found in the cerebrospinal fluid ...

Machine learning IDs markers to help predict Alzheimer's

September 19, 2018
Nearly 50 million people worldwide have Alzheimer's disease or another form of dementia. These irreversible brain disorders slowly cause memory loss and destroy thinking skills, eventually to such an extent that self-care ...

New appropriate use criteria for lumbar puncture in Alzheimer's diagnosis

October 10, 2018
In preparation for more tools that detect and measure the biology associated with Alzheimer's and other dementias earlier and with more accuracy, an Alzheimer's Association-led Workgroup has published appropriate use criteria ...

Cardiorespiratory fitness, white matter integrity tied to cognition

February 22, 2018
(HealthDay)—Cardiorespiratory fitness (CRF) is associated with better white matter (WM) fiber integrity in patients with mild cognitive impairment (MCI), according to a study published recently in the Journal of Alzheimer's ...

Active lifestyle boosts brain structure and slows Alzheimer's disease

November 26, 2012
An active lifestyle helps preserve gray matter in the brains of older adults and could reduce the burden of dementia and Alzheimer's disease (AD), according to a study presented today at the annual meeting of the Radiological ...

Eating fish reduces risk of Alzheimer's disease

November 30, 2011
People who eat baked or broiled fish on a weekly basis may be improving their brain health and reducing their risk of developing mild cognitive impairment (MCI) and Alzheimer's disease, according to a study presented today ...

Recommended for you

Researchers classify Alzheimer's patients in six subgroups

December 5, 2018
Researchers studying Alzheimer's disease have created an approach to classify patients with Alzheimer's disease, a finding that may open the door for personalized treatments.

Neuroscientists pinpoint genes tied to dementia

December 3, 2018
A UCLA-led research team has identified genetic processes involved in the neurodegeneration that occurs in dementia—an important step on the path toward developing therapies that could slow or halt the course of the disease. ...

Detecting signs of neurodegeneration earlier and more accurately

November 30, 2018
Signs of neurodegenerative diseases, appearing years before the emergence of clinical manifestations, can be detected during the examination of medical samples by means of fluorescence microscopy by using new sensitive and ...

Never-before-seen DNA recombination in the brain linked to Alzheimer's disease

November 21, 2018
Scientists from Sanford Burnham Prebys Medical Discovery Institute (SBP) have identified gene recombination in neurons that produces thousands of new gene variants within Alzheimer's disease brains. The study, published today ...

AI matched, outperformed radiologists in screening X-rays for certain diseases

November 21, 2018
In a matter of seconds, a new algorithm read chest X-rays for 14 pathologies, performing as well as radiologists in most cases, a Stanford-led study says.

New information on the pathological mechanisms of Alzheimer's disease

November 21, 2018
Researchers at the University of Helsinki have discovered a mechanism by which harmful tau protein aggregates are transmitted between neurons. Alongside amyloid plaques, tau aggregates in the brain are a significant factor ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.