The long and short of CDK12

December 3, 2018 by Bendta Schroeder, Massachusetts Institute of Technology
An enzyme encircles the double helix to repair a broken strand of DNA. Credit: Tom Ellenberger/Washington University School of Medicine in St. Louis, Dave Gohara/Saint Louis University School of Medicine

Mutations in the BRCA1 and BRCA2 genes pose a serious risk for breast and ovarian cancer because they endanger the genomic stability of a cell by interfering with homologous recombination repair (HR), a key mechanism for accurately repairing harmful double-stranded breaks in DNA. Without the ability to use HR to fix double-stranded breaks, the cell is forced to resort to more error-prone—and thus more cancer-prone—forms of DNA repair.

The BRCA1 and BRCA2 genes are not the only genes whose mutations foster tumorigenesis by causing an inability to repair DNA double strand breaks by HR. Mutations in twenty-two genes are known to disrupt HR, giving rise to tumors with what researchers call "BRCAness" characteristics. All but one of these BRCAness genes are known to be directly involved in the HR pathway.

The one exception, CDK12, is thought to facilitate a set of different processes altogether, involving how RNA transcripts are elongated, spliced and cleaved into their mature forms. While the connection between this RNA-modulating gene to DNA repair remained poorly understood, the identification of CDK12 as a BRCAness gene piqued significant clinical interest.

The researchers who pinpointed this connection, Sara Dubbury and Paul Boutz, both work in the laboratory of Phillip Sharp, Institute Professor, professor of biology, and member of the Koch Institute for Integrative Cancer Research. In a study appearing online in Nature on Nov. 28, they describe how they discovered a previously unknown mechanism by which CDK12 enables the production of full-length RNA transcripts and that this mechanism was especially critical to maintain functional expression of the other BRCAness genes.

When the researchers knocked out expression of CDK12, mouse stem cells showed many signs of accumulating DNA damage that prevented DNA replication from going forward, classic indications of a BRCAness phenotype. To identify what roles CDK12 may play in regulating gene expression, the researchers turned to RNA sequencing to determine which genes had increased or decreased their overall expression.

To their surprise, only genes activated by p53 and early differentiation (side effects of accumulating unrepaired DNA damage and BRCAness in mouse stem cells) accounted for the lion's share of changes to RNA transcription. However, when the researchers instead focused on the types of RNAs transcribed, they found that many genes produced unusually short transcripts when CDK12 was absent.

Not every stretch of DNA in a gene makes it into the final RNA transcript. The initial RNA from a gene often includes sections, which researchers call "introns," that are cut out of transcript, the discovery that earned Sharp the 1993 Nobel Prize in Physiology or Medicine and the remaining sections. "Exons," are spliced together to form a mature transcript (mRNA). Alternately, an intronic polyadenylation (IPA) site may be activated to cleave away the RNA sequence that follows it preventing intron removal and generating a prematurely shortened transcript. These processes allow the same gene to produce alternate forms of messenger RNA (mRNA), and thus be translated into different protein sequences.

Surprisingly CDK12 knockout cells produced significantly more IPA-truncated transcripts genome-wide, while full-length transcripts for the same genes were reduced. These shortened mRNAs can vary greatly in their stability, their ability to be translated into protein, and their . Thus, even while a gene may be actively transcribed, its translation into functional proteins can be radically altered or depleted by IPA activation.

While this observation began to illuminate CDK12's role in regulating mRNA processing, what remained puzzling was why CDK12 loss affected the HR pathway so disproportionately. In investigating this question, Dubbury and Boutz found that BRCAness genes were overrepresented as a group among those genes that have increased IPA activity upon CDK12 loss.

Additionally, while CDK12 suppresses IPA activity genome-wide, 13 of the other 21 BRCAness genes were found to be particularly vulnerable to CDK12 loss, in part, because they possess multiple high-sensitivity IPA sites, which have a compound effect in decreasing the total amount of full-length transcripts. Moreover, because multiple CDK12-senstive BRCAness genes operate in the same HR pathway, the researchers believe that the disruption to HR repair of double-stranded DNA breaks is amplified.

CDK12 mutations are found recurrently in prostate and patients, making them an attractive diagnostic and therapeutic target for cancer. However, not enough is known about CDK12 to distinguish between true loss-of-function mutations and so-called "passenger mutations" with no functional consequence.

"The ability to identify patients with true loss-of-function mutations in CDK12 would enable clinicians to label a new cohort of patients with bona fide BRCAness tumors that could benefit from certain highly effective and targeted chemotherapeutics against BRCAness, such as PARP1 inhibitors," says Dubbury, a former David H. Koch Fellow.

Dubbury and Boutz were able to confirm that IPA sites in key BRCAness were also used more frequently upon CDK12 loss in human tumor cells using RNA sequencing data from prostate and ovarian tumor patients with CDK12 mutations and by treating human prostate adenocarcinoma and ovarian carcinoma cells with a CDK12 inhibitor. This result suggests that the CDK12 mechanism observed in mouse cell lines is conserved in humans and that CDK12 mutations in human ovarian and prostate tumors may promote tumorigenesis by increasing IPA activity and thus functionally attenuating HR repair.

"These results not only give us a better understanding how CDK12 contributes to BRCAness, they also may have exciting potential impact in the clinic," Dubbury says. "Currently available diagnostic techniques could be used to probe the usage of IPA sites found in this study to rapidly screen for patients with true loss-of-function CDK12 mutations, who would respond to BRCAness-targeted treatments."

Paul Boutz, a research scientist in the Sharp Lab, is co-first author of the study, and has plans to follow-up many of these implications for ovarian and prostate cancer his lab at the University of Rochester School of Medicine and Dentistry.

"CDK12 provides a remarkable example of how factors that control the processing of RNA molecules can function as master regulators of gene networks, and thereby profoundly affect the physiology of both normal and cancerous cells," he says.

Phil Sharp, the senior author on the work, says "Sara's and Paul's surprising discovery that CDK12 suppresses intronic polyadenylation has implications for fundamental new insights into gene structure as well as for control of cancer."

Explore further: Cancer researchers hit a bullseye with new drug target for Ewing sarcoma

More information: Sara J. Dubbury et al. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation, Nature (2018). DOI: 10.1038/s41586-018-0758-y

Related Stories

Cancer researchers hit a bullseye with new drug target for Ewing sarcoma

January 25, 2018
Screening a class of recently-developed drug compounds—so-called "CDK inhibitors" capable of blocking CDK7/12/13 proteins—against hundreds of different human cancer cell lines, researchers at Dana-Farber/Boston Children's ...

Gene testing could identify men with prostate cancer who may benefit from immunotherapy

June 14, 2018
Scientists have identified a pattern of genetic changes that could pick out men with advanced prostate cancer who are likely to benefit from immunotherapy.

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

Unraveling role of tumor suppressor in gene expression and ovarian tumorigenesis

June 26, 2018
The tumor suppressor protein ARID1A controls global transcription in ovarian epithelial cells, according to new research conducted at The Wistar Institute, which provided mechanistic insight into tumorigenesis mediated by ...

A gene defect as a potential gateway for targeted prostate cancer therapy

September 5, 2016
The loss of CHD1, one of the most frequently mutated genes in prostate tumors, sensitizes human prostate cancer cells to different drugs, including PARP inhibitors. This suggests CHD1 as a potential biomarker for targeted ...

Novel combination therapy shown to be effective in ovarian cancer

December 19, 2017
Researchers at The Wistar Institute have found that combining PARP inhibitors, recently approved for the treatment of BRCA-mutant ovarian cancer, with another small molecule inhibitor was effective to treat ovarian cancers ...

Recommended for you

Researchers use computer model to predict prostate cancer progression

December 12, 2018
An international team of cancer researchers from Denmark and Germany have used cancer patient data to develop a computer model that can predict the progression of prostate cancer. The model is currently being implemented ...

New understanding of mysterious 'hereditary swelling'

December 12, 2018
For the first time ever, biomedical researchers from Aarhus University, Denmark, report cellular defects that lead to a rare disease, hereditary angioedema (HAE), in which patients experience recurrent episodes of swelling ...

Pushing closer to a new cancer-fighting strategy

December 11, 2018
A molecular pathway that's frequently mutated in many different forms of cancer becomes active when cells push parts of their membranes outward into bulging protrusions, Johns Hopkins researchers report in a new study. The ...

Receiving genetic information can change risk

December 11, 2018
Millions of people in the United States alone have submitted their DNA for analysis and received information that not only predicts their risk for disease but, it turns out, in some cases might also have influenced that risk, ...

Scientists have identified and modelled a distinct biology for paediatric AML

December 11, 2018
Scientists have identified and modelled a distinct biology for paediatric acute myeloid leukaemia, one of the major causes of death in children.

HER2 mutations can cause treatment resistance in metastatic ER-positive breast cancer

December 11, 2018
Metastatic breast cancers treated with hormone therapy can become treatment-resistant when they acquire mutations in the human epidermal growth factor receptor 2 (HER2) that were not present in the original tumor, reports ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.