Neurodegenerative diseases identified using artificial intelligence

Researchers have developed an artificial intelligence platform to detect a range of neurodegenerative disease in human brain tissue samples, including Alzheimer's disease and chronic traumatic encephalopathy, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published in the Nature medical journal Laboratory Investigation. Their discovery will help scientists develop targeted biomarkers and therapeutics, resulting in a more accurate diagnosis of complex brain diseases that improve patient outcomes.

The buildup of abnormal tau proteins in the brain in neurofibrillary tangles is a feature of Alzheimer's disease, but it also accumulates in other neurodegenerative diseases, such as and additional age-related conditions. Accurate diagnosis of neurodegenerative diseases is challenging and requires a highly-trained specialist.

Researchers at the Center for Computational and Systems Pathology at Mount Sinai developed and used the Precise Informatics Platform to apply powerful machine learning approaches to digitized microscopic slides prepared using tissue samples from patients with a spectrum of neurodegenerative diseases. Applying , these images were used to create a convolutional neural network capable of identifying with a high degree of accuracy directly from digitized images.

"Utilizing has great potential to improve our ability to detect and quantify neurodegenerative diseases, representing a major advance over existing labor-intensive and poorly reproducible approaches," said lead investigator John Crary, MD, Ph.D., Professor of Pathology and Neuroscience at the Icahn School of Medicine at Mount Sinai. "Ultimately, this project will lead to more efficient and accurate diagnosis of ."

This is the first framework available for evaluating deep learning algorithms using large-scale image data in neuropathology. The Precise Informatics Platform allows for data managements, visual exploration, object outlining, multi-user review, and evaluation of deep learning algorithm results.

Researchers at the Center for Computational and Systems Pathology at Mount Sinai have used use advanced computer science and mathematical techniques coupled with cutting-edge microscope technology, computer vision, and artificial intelligence to more accurately classify a broad array of diseases.

"Mount Sinai is the largest academic department in the country and processes more than 80 million tests a year, which offers researchers access to a broad set of data that can be used to improve testing and diagnostics, ultimately leading to better diagnosis and patient outcomes," said author Carlos Cordon-Cardo, MD, Ph.D., Chair of the Department of Pathology at the Mount Sinai Health System and Professor of Pathology, Genetics and Genomic Sciences, and Oncological Sciences at the Icahn School of Medicine.


Explore further

Pathology test uses AI to predict prostate cancer progression following surgery

More information: Maxim Signaevsky et al, Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy, Laboratory Investigation (2019). DOI: 10.1038/s41374-019-0202-4
Citation: Neurodegenerative diseases identified using artificial intelligence (2019, March 4) retrieved 24 August 2019 from https://medicalxpress.com/news/2019-03-neurodegenerative-diseases-artificial-intelligence.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
9 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more