Better understanding communication between neurons in the brain

Better understanding communication between neurons in the brain
Scheme of the new Fused Fiber Light Emission and eXtracellular Recording (FFLEXR). Credit: Research group of Ilka Diester

In the field of optogenetics, scientists investigate the activity of neurons in the brain using light. A team led by Prof. Dr. Ilka Diester and Dr. David Eriksson from the Optophysiology Laboratory at the University of Freiburg has developed a new method to simultaneously conduct laminar recordings, multifiber stimulations, 3D optogenetic stimulation, connectivity inference, and behavioral quantification on brains. Their results are presented in Nature Communications. "Our work paves the way for large-scale photo-recording and controlled interrogation of fast neural communication in any combination of brain areas," Diester explains. "This can help us unravel the rapid and multilayered dialogs between neurons that maintain brain function."

The research group, in collaboration with Dr. Patrick Ruther of the Department of Microsystems Engineering (IMTEK) at the University of Freiburg, is developing a new method for the controlled interrogation and recording of neuronal activity in the . To do this, the team is taking advantage of thin, cell-sized optical fibers for minimally invasive optogenetic implantation. "We combine side-emitting fibers with silicon probes to achieve high-quality recordings and ultrafast, multichannel optogenetic control."

They call the system Fused Fiber Light Emission and eXtracellular Recording, or FFLEXR. In addition to optical fibers that can be attached to any silicon probe, the uses linear depth-resolved , a lightweight fiber matrix connector, a flexible multifiber ribbon cable, an optical commutator for efficient multichannel stimulation, a general-purpose patch cable, and an algorithm to manage the photovoltaic response.

"Our alternative approach maintains the flexibility to apply any desired wavelength via an external interchangeable light source and enable at different depths of brain tissue," Diester says.

Ilka Diester heads a research group at the Institute of Biology III and research center IMBIT/BrainLinks-BrainTools at the University of Freiburg that uses optophysiology, i.e. novel optical tools, to investigate the functioning of neuronal circuits. The scientists are investigating the neuronal basis of motor and cognitive control as well as interactions between the prefrontal and motor cortex, both of which are part of the cerebral cortex.

More information: David Eriksson et al, Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation, Nature Communications (2022). DOI: 10.1038/s41467-022-28629-6

Journal information: Nature Communications
Citation: Better understanding communication between neurons in the brain (2022, February 22) retrieved 26 June 2024 from https://medicalxpress.com/news/2022-02-neurons-brain.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers use new method to investigate neural oscillations

90 shares

Feedback to editors