Radiomic model helps predict radiotherapy treatment response in patients with brain metastases

Radiomic model helps predict radiotherapy treatment response in patients with brain metastases
The workflow of radiomics. Credit: Wang Yixin

A research team led by Prof. Li Hai and Wang Hongzhi from the Hefei Institutes of Physical Science of the Chinese Academy of Sciences (CAS) has recently proposed an interpretable radiomic model for predicting radiotherapy treatment response in patients with brain metastases. Results were published in European Radiology.

Radiometrics refers to the extraction of high-throughput radiological features from medical images to assist clinical decision making. These radiological features can reflect the biological information of tumors that cannot be directly obtained by traditional image interpretation. Therefore, -based approaches can rely on in-depth data mining to gain additional knowledge about tumor heterogeneity. At present, there is no model to accurately predict the efficacy of in patients with brain metastases in .

In this study, combining radiomics and SHapley Additive exPlanations (SHAP) methods, the researchers proposed the interpretable radiomic model to solve this clinical problem.

They extracted radiomic features from the imaging (MRI) images of patients with brain metastases before radiotherapy. Then, they used machine learning methods to model the radiation. Finally, they interpreted the model using SHAP based on , which could help develop precise radiotherapy for patients with brain metastases.

Radiomic model helps predict radiotherapy treatment response in patients with brain metastases
SHAP interpret and visualize radiomic model. Credit: Wang Yixin

The model has good performance, and the prediction results of external validation group also show that the model has generalization to a certain extent, according to Wang Yixin, first author of the study.

At the same time, SHAP method can realize interpretability and visualization of the model, avoiding the "black box" effect of traditional machine learning algorithms, which is conducive to clinicians' understanding of the model and promoting its use.


Explore further

Deep-radiomics models can diagnose osteoporosis

More information: Yixin Wang et al, The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study, European Radiology (2022). DOI: 10.1007/s00330-022-08887-0
Citation: Radiomic model helps predict radiotherapy treatment response in patients with brain metastases (2022, June 21) retrieved 7 July 2022 from https://medicalxpress.com/news/2022-06-radiomic-radiotherapy-treatment-response-patients.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
11 shares

Feedback to editors