This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


trusted source


Scientists report positive immune response against mpox using a COVID-19 vaccine

Scientists report positive immune response against mpox using a COVID-19 vaccine
MVA-specific humoral and cellular responses in COH04S1-vaccinated healthy adults. a COH04S1 schedule and dosing in healthy adults. Large circles indicate time of vaccination. MVA-specific humoral responses. MVA-specific IgG endpoint titers (b), and neutralizing antibodies (NAb) (c) were measured by ELISA and neutralization assay in subjects before vaccination, post-prime vaccination, and at one- and five-months post-booster vaccination with COH04S1 at dose-level (DL) 1 (DL1/DL1 [lavender circles] and DL1/placebo/DL1 [upward purple triangles]), DL2 (DL2/DL2 [downward pink triangles]), and DL3 (DL3/DL3 [green squares]) (n = 5 subjects/group). Placebo controls (n = 4 subjects [gray diamonds]) were included. c MVA-specific cellular responses. MVA-specific CD8+ and CD4 + T cells co-expressing CD107 (blue circles and downward pink triangles, respectively) or CD69 (upward purple triangles and green squares, respectively) markers were measured by intracellular IFNγ staining in subjects described in b-c. Box plots show 25th–75th percentiles, lines indicate medians, whiskers go from minimum to maximum values. Two-way ANOVA followed by Tukey’s multiple comparison test was used in (b, c) after log transformation. Two-tailed Wilcoxon paired T test was used in (d). P values < 0.05 are shown. Dotted lines in b-c represent the lower limit of detection of the assay. Credit: Communications Medicine (2024). DOI: 10.1038/s43856-024-00443-9

Scientists at City of Hope, one of the largest cancer research and treatment organizations in the United States, show that a COVID-19 vaccine developed at the organization's Los Angeles campus also protects against mpox, according to research published in Communications Medicine.

The vaccine was developed in the laboratory of Don J. Diamond, Ph.D., City of Hope professor in the Department of Hematology & Hematopoietic Cell Transplantation and a member of the Hematological Malignancies Research Institute.

In research led by vaccine experts at City of Hope, a novel COVID-19 vaccine candidate (COH04S1) has been found to also elicit a robust immune response to the mpox (formerly known as monkey pox) virus. Humans and who received COH04S1 generated an mpox virus (MPXV) cross-reactive antibody response similar to individuals who were vaccinated against mpox by the only Food and Drug Administration-approved smallpox/mpox vaccine on the market, JYNNEOS.

In a relevant mouse model, the authors also showed that the novel COVID-19 vaccine provides protection against the mpox virus strain that caused the recent 2022-2023 global mpox outbreak. COH04S1 could represent a new tool for vaccinating against COVID-19 and mpox with just one injection. COH04S1 is licensed to Geovax laboratories (NASDAQ: GOVX) for COVID-19 and mpox.

In 2020, researchers at City of Hope developed a fully synthetic platform of the highly attenuated modified vaccinia Ankara (MVA) vector that is virtually identical to the form used in the JYNNEOS vaccine. MVA is a strain of a type of poxvirus used to deliver genes to cells that help the body figure out how to fight a virus. The scientists established a virtually identical replica of MVA and used it to make a multiantigen COVID-19 vaccine that is now in Phase 2 and represents the most clinically advanced MVA-based COVID-19 vaccine.

Because the vaccine uses a poxvirus replica, the team wanted to see if it also protected against mpox, and found that it does. In fact, they found that mice vaccinated with COH04S1 or just the synthetic MVA both were protected from after being exposed to a globally circulating strain of mpox, further proving that the synthetic MVA shares virtually identical properties to the natural MVA.

While mpox is not an emergency at the moment, it is reemerging in various locales worldwide (Africa and Asia) and other poxvirus strains with pandemic potential could occur in the future. The COH04S1 vaccine could protect against different poxvirus strains and has the potential to be used as a dual vaccine that can be effective against COVID-19 and mpox disease. Furthermore, because the basic vaccine design can be modified, there could be multiple applications in which vaccines are made for other infectious disease indications but always include background protection against mpox.

The researchers also believe that COH04S1 could serve as an alternative to JYNNEOS in the face of a large outbreak or vaccine shortage, as viral vector vaccine production is hard to scale up rapidly. Immunocompromised individuals are more susceptible to mpox infection symptoms. Because COH04S1 uses the synthetic MVA vector that has been safely tested in hematopoietic cell transplant recipients, it could also serve as a much-needed option for this population and other immunocompromised populations, such as people living with HIV and cancer.

The research team is actively moving forward with plans to develop COH04S1 as an alternative to JYNNEOS and are currently producing it in a cell line for vaccinations. They would also like to develop a clinical trial to do a direct comparison of COH04S1 and JYNNEOS to see if there are differences in response rates and mechanisms.

Flavia Chiuppesi, Ph.D., formerly at City of Hope, is the study's lead author. Study author Felix Wussow, Ph.D., City of Hope assistant research professor in the Department of Hematology & Hematopoietic Cell Transplantation, is an inventor and developer of the COVID-19 vaccine, as well as the synthetic vaccine platform, along with Diamond and Chiuppesi. John Zaia, M.D., the Aaron D. Miller and Edith Miller Chair in Gene Therapy at City of Hope, is the paper's second author. Diamond is the principal investigator of these studies and a paid consultant for Geovax.

More information: Flavia Chiuppesi et al, Synthetic modified vaccinia Ankara vaccines confer cross-reactive and protective immunity against mpox virus, Communications Medicine (2024). DOI: 10.1038/s43856-024-00443-9

Citation: Scientists report positive immune response against mpox using a COVID-19 vaccine (2024, March 4) retrieved 24 April 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

JYNNEOS vaccination provides protection against mpox


Feedback to editors