Vaccination

Machine learning may lead to better flu vaccines

A team led by scientists at UGA's Odum School of Ecology has developed an algorithm that can accurately predict how a seasonal flu virus is expected to evolve. Such information may allow seasonal flu vaccines to be updated ...

Genetics

Gene therapy gets a turbo boost from researchers

For decades, scientists have dreamed of a future where genetic diseases, such as the blood clotting disorder hemophilia, could be a thing of the past. Gene therapy, the idea of fixing faulty genes with healthy ones, has held ...

Oncology & Cancer

Scientists find way to starve breast cancer cells

Cancer cells have voracious appetites. And there are certain nutrients they can't live without. Scientists have long hoped they might stop tumors in their tracks by cutting off an essential part of cancer cells' diet. But ...

Diseases, Conditions, Syndromes

Universal flu vaccine candidate protects against infection in mice

Annual flu vaccines protect against severe infection, but they vary in efficacy and may not match the most virulent strains of the season. The reality of a universal flu vaccine, which would protect people from all strains, ...

page 1 from 4

Acid

An acid (from the Latin acidus/acēre meaning sour) is a substance which reacts with a base. Commonly, acids can be identified as tasting sour, reacting with metals such as calcium, and bases like sodium carbonate. Aqueous acids have a pH of less than 7, where an acid of lower pH is typically stronger, and turn blue litmus paper red. Chemicals or substances having the property of an acid are said to be acidic.

Common examples of acids include acetic acid (in vinegar), sulfuric acid (used in car batteries), and tartaric acid (used in baking). As these three examples show, acids can be solutions, liquids, or solids. Gases such as hydrogen chloride can be acids as well. Strong acids and some concentrated weak acids are corrosive, but there are exceptions such as carboranes and boric acid.

There are three common definitions for acids: the Arrhenius definition, the Brønsted-Lowry definition, and the Lewis definition. The Arrhenius definition states that acids are substances which increase the concentration of hydronium ions (H3O+) in solution. The Brønsted-Lowry definition is an expansion: an acid is a substance which can act as a proton donor. Most acids encountered in everyday life are aqueous solutions, or can be dissolved in water, and these two definitions are most relevant. The reason why pHs of acids are less than 7 is that the concentration of hydronium ions is greater than 10−7 moles per liter. Since pH is defined as the negative logarithm of the concentration of hydronium ions, acids thus have pHs of less than 7. By the Brønsted-Lowry definition, any compound which can easily be deprotonated can be considered an acid. Examples include alcohols and amines which contain O-H or N-H fragments.

In chemistry, the Lewis definition of acidity is frequently encountered. Lewis acids are electron-pair acceptors. Examples of Lewis acids include all metal cations, and electron-deficient molecules such as boron trifluoride and aluminium trichloride. Hydronium ions are acids according to all three definitions. Interestingly, although alcohols and amines can be Brønsted-Lowry acids as mentioned above, they can also function as Lewis bases due to the lone pairs of electrons on their oxygen and nitrogen atoms.

This text uses material from Wikipedia, licensed under CC BY-SA