Diseases, Conditions, Syndromes

A portable, reusable test for COVID-19

"Testing, testing, testing." It's a mantra that health officials have been constantly promoting because screening people for COVID-19 is the best way to contain its spread. In the U.S., however, that crucial necessity has ...

Oncology & Cancer

Diagnosing breast cancer using skin electrical resistance

Mammograms are a safe, effective way to detect the presence of breast cancer in women. But doctors recommend most females should start getting mammograms after the age of 40 in part because the procedure involves small doses ...

Oncology & Cancer

The right dose for oncology

EPFL researchers develop a tool for oncologists using the electrical signature of cancer cells to get just the right treatment dosage for each patient.

page 1 from 2

Electrical resistance

The electrical resistance of an object is a measure of its opposition to the passage of a steady electric current. An object of uniform cross section will have a resistance proportional to its length and inversely proportional to its cross-sectional area, and proportional to the resistivity of the material.

Discovered by Georg Ohm in the late 1820s, electrical resistance shares some conceptual parallels with the mechanical notion of friction. The SI unit of electrical resistance is the ohm, symbol Ω. Resistance's reciprocal quantity is electrical conductance measured in siemens, symbol S.

The resistance of a resistive object determines the amount of current through the object for a given potential difference across the object, in accordance with Ohm's law:

where

For a wide variety of materials and conditions, the electrical resistance does not depend on the amount of current through or the amount of voltage across the object, meaning that the resistance R is constant for the given temperature. Therefore, the resistance of an object can be defined as the ratio of voltage to current:

In the case of nonlinear objects (not purely resistive, or not obeying Ohm's law), this ratio can change as current or voltage changes; the ratio taken at any particular point, the inverse slope of a chord to an I–V curve, is sometimes referred to as a "chordal resistance" or "static resistance".

This text uses material from Wikipedia, licensed under CC BY-SA