Neuroscience

Breakthrough in understanding how human eyes process 3-D motion

Scientists at the University of York have revealed that there are two separate 'pathways' for seeing 3-D motion in the human brain, which allow people to perform a wide range of tasks such as catching a ball or avoiding moving ...

Neuroscience

Scientists develop 'mini-brain' model of human prion disease

National Institutes of Health scientists have used human skin cells to create what they believe is the first cerebral organoid system, or "mini-brain," for studying sporadic Creutzfeldt-Jakob disease (CJD). CJD is a fatal ...

Medical research

Advancing epilepsy treatment

Researchers at Case Western Reserve University have successfully prevented epileptic seizures in animal models by preemptively directing a low-frequency stimulus to the nerve fibers in the brain.

Neuroscience

Our brains appear uniquely tuned for musical pitch

In the eternal search for understanding what makes us human, scientists found that our brains are more sensitive to pitch, the harmonic sounds we hear when listening to music, than our evolutionary relative the macaque monkey. ...

Neuroscience

Scientists recreate blood-brain barrier defect outside the body

Scientists can't make a living copy of your brain outside your body. That's the stuff of science fiction. But in a new study, they recreated a critical brain component, the blood-brain barrier, that functioned as it would ...

page 1 from 23

Human brain

The human brain is the center of the human nervous system and is a highly complex organ. Enclosed in the cranium, it has the same general structure as the brains of other mammals, but is over three times as large as the brain of a mammal with an equivalent body size. Most of the expansion comes from the cerebral cortex, a convoluted layer of neural tissue that covers the surface of the forebrain. Especially expanded are the frontal lobes, which are involved in executive functions such as self-control, planning, reasoning, and abstract thought. The portion of the brain devoted to vision is also greatly enlarged in humans.

Brain evolution, from the earliest shrewlike mammals through primates to hominids, is marked by a steady increase in encephalization, or the ratio of brain to body size. The human brain has been estimated to contain 50–100 billion (1011) neurons[citation needed], of which about 10 billion (1010) are cortical pyramidal cells.[citation needed] These cells pass signals to each other via approximately 100 trillion (1014)[citation needed] synaptic connections.

In spite of the fact that it is protected by the thick bones of the skull, suspended in cerebrospinal fluid, and isolated from the bloodstream by the blood-brain barrier, the delicate nature of the human brain makes it susceptible to many types of damage and disease. The most common forms of physical damage are closed head injuries such as a blow to the head, a stroke, or poisoning by a wide variety of chemicals that can act as neurotoxins. Infection of the brain is rare because of the barriers that protect it, but is very serious when it occurs. More common are genetically based diseases[citation needed], such as Parkinson's disease, multiple sclerosis, and many others. A number of psychiatric conditions, such as schizophrenia and depression, are widely thought to be caused at least partially by brain dysfunctions, although the nature of such brain anomalies is not well understood.

This text uses material from Wikipedia, licensed under CC BY-SA