Cardiology

Low glycemic index diet helps heart patients lose weight

Eating low glycemic index foods promotes a healthier body shape in patients with coronary artery disease, according to a study presented at ACNAP-EuroHeartCare Congress 2022, a scientific congress of the European Society ...

Oncology & Cancer

Vitamin D supplements may reduce risk of developing advanced cancer

For many years, investigators have been trying to pin down the tantalizing connection between vitamin D and cancer. Epidemiological studies have found that people who live near the equator, where exposure to sunlight produces ...

Diseases, Conditions, Syndromes

COVID is still out there. Here's what to do if you get it now

The government is ready to declare COVID-19 over: The nationwide state of emergency is set to end on May 11. In California, the state of emergency concluded in February. Johns Hopkins University shut down its nationwide COVID-19 ...

Gerontology & Geriatrics

How interval training affects 'belly fat' in obese 70-year-olds

By today's estimates, one-third of adults aged 65 or older are obese. This growing obesity trend, along with the decrease in our level of physical activity as we age, seriously raises our risk of diseases and death.

Gerontology & Geriatrics

Ceramides found to be key in aging muscle health

During aging, mice, like humans, become inactive and lose muscle mass and strength. A team of scientists led by Johan Auwerx at EPFL have now discovered that when mice age, their muscles become packed with ceramides. Ceramides, ...

Health

Vitamin D deficiency may impair muscle function

Vitamin D deficiency may impair muscle function due to a reduction in energy production in the muscles, according to a mouse study published in the Journal of Endocrinology. Vitamin D deficient mice were found to have impaired ...

page 1 from 40

Mass

Mass can be defined as a quantitive measure of the resistance an object has to change in its velocity. In physics, mass (from Ancient Greek: μᾶζα) commonly refers to any of the following three properties of matter, which have been shown experimentally to be equivalent:

Mass must be distinguished from matter in physics, because matter is a poorly-defined concept, and although all types of agreed-upon matter exhibit mass, it is also the case that many types of energy which are not matter—such as potential energy, kinetic energy, and trapped electromagnetic radiation (photons)—also exhibit mass. Thus, all matter has the property of mass, but not all mass is associated with identifiable matter.

In everyday usage, "mass" is often used interchangeably with weight, and the units of weight are often taken to be kilograms (for instance, a person may state that their weight is 75kg). In scientific use, however, the two terms refer to different, yet related, properties of matter. Weight can be zero if no gravitational force is acting but mass can never be zero.

The inertial mass of an object determines its acceleration in the presence of an applied force. According to Newton's second law of motion, if a body of fixed mass M is subjected to a force F, its acceleration α is given by F/M.

A body's mass also determines the degree to which it generates or is affected by a gravitational field. If a first body of mass MA is placed at a distance r from a second body of mass MB, each body experiences an attractive force F whose magnitude is

where G is the universal constant of gravitation, equal to 6.67×10−11 N m2kg-2. This is sometimes referred to as gravitational mass (when a distinction is necessary, M is used to denote the active gravitational mass and m the passive gravitational mass). Repeated experiments since the 17th century have demonstrated that inertial and gravitational mass are equivalent; this is entailed in the equivalence principle of general relativity.

Special relativity shows that rest mass (or invariant mass) and rest energy are essentially equivalent, via the well-known relationship (E=mc2). This same equation also connects relativistic mass and "relativistic energy" (total system energy). These are concepts that are related to their "rest" counterparts, but they do not have the same value, in systems where there is a net momentum. In order to deduce any of these four quantities from any of the others, in any system which has a net momentum, an equation that takes momentum into account is needed.

Mass (so long as the type and definition of mass is agreed upon) is a conserved quantity over time. From the viewpoint of any single unaccelerated observer, mass can neither be created or destroyed, and special relativity does not change this understanding (though different observers may not agree on how much mass is present, all agree that the amount does not change over time). However, relativity adds the fact that all types of energy have an associated mass, and this mass is added to systems when energy is added, and the associated mass is subtracted from systems when the energy leaves. In such cases, the energy leaving or entering the system carries the added or missing mass with it, since this energy itself has mass. Thus, mass remains conserved when the location of all mass is taken into account.

On the surface of the Earth, the weight W of an object is related to its mass m by

where g is the Earth's gravitational field strength, equal to about 9.81 m s−2. An object's weight depends on its environment, while its mass does not: an object with a mass of 50 kilograms weighs 491 newtons on the surface of the Earth; on the surface of the Moon, the same object still has a mass of 50 kilograms but weighs only 81.5 newtons.

This text uses material from Wikipedia, licensed under CC BY-SA