HIV & AIDS

How HIV infects cells

In a long-awaited finding, an international team of scientists using high-brightness x-rays from the U.S. Department of Energy Office of Science's Advanced Photon Source at Argonne National Laboratory has determined the high-resolution ...

Arthritis & Rheumatism

Study shows how cartilage interacts with the joints in our bodies

Cartilage is a fascinating substance. It coats the ends of our bones, allowing them to glide by one another at joints like our elbows and our knees. The surface it creates is about five times more slippery than ice on ice.

Cardiology

New handheld scanner to give instant heart disease diagnosis

With worldwide cardiovascular deaths at an all-time high, European scientists have developed a new handheld scanner that can read your heart's vital signs like a supermarket barcode reader can scan items at the checkout, ...

Neuroscience

Structural dynamics underlying memory in aging brains

(Medical Xpress)—When the brains of those who have succumbed to age-related neurodegeneration are analyzed post-mortem, they typically show significant atrophy on all scales. Not only is the cortex thinner and sparser, ...

page 1 from 5

Photonics

The science of photonics includes the generation, emission, transmission, modulation, signal processing, switching, amplification, detection and sensing of light. The term photonics thereby emphasizes that photons are neither particles nor waves — they are different in that they have both particle and wave nature. It covers all technical applications of light over the whole spectrum from ultraviolet over the visible to the near-, mid- and far-infrared. Most applications, however, are in the range of the visible and near infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

This text uses material from Wikipedia, licensed under CC BY-SA