Putting the squeeze on Alzheimer's (w/ Video)

August 20, 2010

Brain cells exposed to a form of the amyloid beta protein, the molecule linked to Alzheimer's disease, become stiffer and bend less under pressure, researchers at UC Davis have found. The results reveal one mechanism by which the amyloid protein damages the brain, a finding that could lead to new ways to screen drugs for Alzheimer's and similar diseases.

The researchers, led by Gang-Yu Liu, professor of chemistry, and Lee-Way Jin, associate professor of pathology and a researcher at the UC Davis Alzheimer's Disease Center, used a cutting-edge microscope to measure how cells respond to physical pressure. Their findings are published this month in the .

The microscope, located at UC Davis' Spectral Imaging Facility, combines an and a confocal microscope. It is one of a handful in the United States and one of the most advanced of its type, Liu said.

An atomic force microscope uses a fine needle to visualize the features of a surface with exquisite resolution and precision; it is used more often in materials science than in . A confocal microscope can view living cells in culture media and in three dimensions.

The team put a glass microbead on the tip of the AFM needle and used it to press down on living cells. By measuring the forces required to squeeze the cell under the bead, they could calculate the stiffness of both the cell membrane and the cell contents.

"This is a simple method for measuring the stiffness of a cell — like pushing down on a spring," Liu said.

The video will load shortly
A nerve cell deforms under pressure from a bead mounted on a very fine needle. Amyloid protein, found in Alzheimer's Disease, makes cells stiffer and less resilient under pressure. Videography by Gang-Yu Liu, Department of Chemistry

Amyloid-beta peptide is found in tangled and plaques in the brains of Alzheimer's patients and is thought to be the cause of the disease and similar conditions, such as "mad cow" disease. It can exist in different forms: as individual peptide units (); as short chains of peptides (oligomers); and as fibrils.

Liu and Jin exposed cultured neurons () to the three different types of amyloid, and measured their response to pressure. They found that the intermediate, oligomer, form had the greatest effect in stiffening the cells.

From the measurements, Liu and Jin deduced that the amyloid oligomers probably insert themselves into the , changing its properties. Some of the molecules cross the membrane completely and affect the network of proteins that provides a "skeleton" within the cell.

They also found that when the cells were treated with amyloid oligomers, other ions flooded into the cell, showing that the membrane's function had been damaged.

The video will load shortly
This video shows a glass microbead being manuevered over a live white blood cell and then pushing down on the cell. Videography by Gang-Yu Liu, Department of Chemistry

The "squeeze" test could be used as a screening method for potential drugs for Alzheimer's and other diseases, Liu and Jin predicted.

Normal brain cells are the "squishiest" among the cell types they have tested with the technique, Liu said. The cells readily deform under pressure, but recover. At the other end of the scale, skin cells (keratinocytes) are very stiff and resistant to pressure, but shatter under stress.

Related Stories

Recommended for you

Natural compound reduces signs of aging in healthy mice

October 27, 2016

Much of human health hinges on how well the body manufactures and uses energy. For reasons that remain unclear, cells' ability to produce energy declines with age, prompting scientists to suspect that the steady loss of efficiency ...

A metabolic switch to turn off obesity

October 27, 2016

You've tried all the diets. No matter: you've still regained the weight you lost, even though you ate well and you exercised regularly! This may be due to a particular enzyme in the brain: the alpha/beta hydrolase domain-6 ...

Mitochondria control stem cell fate

October 27, 2016

What happens in intestinal epithelial cells during a chronic illness? Basic research conducted at the Chair of Nutrition and Immunology at the Technical University of Munich (TUM) addressed this question by generating a new ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.