Researchers discover gene required to maintain male sex throughout life

University of Minnesota Medical School and College of Biological Sciences researchers have made a key discovery showing that male sex must be maintained throughout life.

The research team, led by Drs. David Zarkower and Vivian Bardwell of the U of M Department of Genetics, and Development, found that removing an important male development gene, called Dmrt1, causes male cells in mouse testis to become female cells.

The findings are published online today in Nature.

In mammals, (XX in female, XY in male) determine the future sex of the animal during by establishing whether the gonads will become testes or ovaries.

"Scientists have long assumed that once the decision is made in the embryo, it's final," Zarkower said. "We have now discovered that when Dmrt1 is lost in mouse testes – even in adults – many male cells become female cells and the testes show signs of becoming more like ovaries."

Previous research has shown that removing a gene, called Foxl2, in ovaries caused female cells to become male cells and the ovaries to become more like testes. According to Zarkower, the latest U of M research determines that the gonads of both sexes must actively maintain the original sex determination decision throughout the remainder of life.

For the research community this new understanding is a breakthrough. The findings provide new insight into how to turn one cell type into another, a process known as reprogramming, and also show that throughout life, cells in the testis must be actively prevented from transforming into female cells normally found in the ovary.

"This work shows that sex determination in can be surprisingly prone to change, and must be actively maintained throughout an organism's lifetime," said Dr. Susan Haynes, who oversees developmental biology grants at the National Institute of General Medical Sciences of the National Institutes of Health. "These new insights have important implications for our understanding of how to reprogram cells to take on different identities, and may shed light on the origin of some human sex reversal disorders."

The new findings may force the scientific community to reconsider how disorders involving human sex-reversal occur. Some of these disorders may not result from errors in the original sex determination decision in the embryo, but instead may result from failure to maintain that decision later in embryonic development. In addition, because DMRT1 has been associated with human gonadal cancers, the researchers hope their findings will provide another clue into how gonadal cancer develops.

Related Stories

Ovaries must suppress their inner male

Dec 10, 2009

For an ovary to remain an ovary, the female organ has to continuously suppress its inner capacity to become male. That's the conclusion of a study in the December 11th issue of the journal Cell revealing that t ...

Brain gene makes a female develop as a male

Dec 22, 2010

Australian scientists have discovered that changes to a gene involved in brain development can lead to testis formation and male genitalia in an otherwise female embryo.

Mouse ovaries and testes age in unique ways

Jun 03, 2008

Aging leads to large changes in gene activity in the ovaries of mice, but only limited changes in testes, according to research published in the open-access journal, BMC Biology. A lifespan-extending calorie-restricted diet ...

Recommended for you

Science of romantic relationships includes gene factor

15 hours ago

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.