Inducing non-REM sleep in mice by novel optogenetical control technique

July 20, 2011

Recently, optogenetics, which controls the activity of neuron using the light-activated protein, has been getting a lot of attention. This light-activated protein works like a switch of neurons by sensing specific color of light. This time, Associate Professor Akihiro YAMANAKA and Dr. Tomomi Tsunematsu from National Institute for Physiological Sciences (NIPS), succeeded in suppressing only the activity of the orexin neurons in the mice's brains (hypothalamus) when the optical switch was on, using the light-activated protein, halorhodopsin (eNpHR). This flipping on and off the optical switch led mice into sleep and wakefulness. Those mice fell into non-REM sleep (slow-wave sleep) only when the halorhodopsin-expressed orexin neurons were exposed to the light. It is reported in the Journal of Neuroscience published by the Society for Neuroscience in USA (July 20, 2011, Eastern Standard Time, USA) .

It has been known the orexin neuron is related to awaking of the brain so far. However, the details have not been clarified whether sleep can be actually induced, if so, what sort of sleep it is, when only the activity of the orexin neuron related to awaking is suppressed even for a short time. Associate Professor Akihiro YAMANAKA and the collaborators made introduced the light-activated protein called halorhodopsin (eNpHR) into their orexin neuron, which can suppress the activity of neuron when exposed to the orange light. By use of the optical switch onto these mice, they suppressed the activity of orexin neuron for one minute, and succeeded in the artificial inducement of sleep. There are two sorts of sleep, one is non-REM sleep which is rarely dreaming, and another is REM sleep which rich in dreams. Their experiments selectively induced only the non-REM sleep among two.

Associate Professor Akihiro YAMANAKA says"Narcolepsy, a sickness of abnormal sleep causes sudden sleep attack and muscle weakness, cataplexy, because the orexin neuron disappears for the long term. These mice reproduced sudden sleep similar to narcolepsy when suppressed the activity of the orexin neuron by the . However, the reproduced sleep was only non-REM sleep, and it did not become sleep onset REM sleep as a characteristic symptom of narcolepsy. It is expected that it would provide clues as to the underlying cause of narcolepsy by examining such a difference."

Related Stories

Recommended for you

Surprising similarity in fly and mouse motion vision

July 29, 2015

At first glance, the eyes of mammals and those of insects do not seem to have much in common. However, a comparison of the neural circuits for detecting motion shows surprising parallels between flies and mice. Scientists ...

Research grasps how the brain plans gripping motion

July 28, 2015

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that ...

New research rethinks how we grab and hold onto objects

July 28, 2015

It's been a long day. You open your fridge and grab a nice, cold beer. A pretty simple task, right? Wrong. While you're debating between an IPA and a lager, your nervous system is calculating a complex problem: how hard to ...

It don't mean a thing if the brain ain't got that swing

July 27, 2015

Like Duke Ellington's 1931 jazz standard, the human brain improvises while its rhythm section keeps up a steady beat. But when it comes to taking on intellectually challenging tasks, groups of neurons tune in to one another ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.